OCTAVIAN PĂSTRĂVANU

MIHAELA MATCOVSCHI

CRISTIAN MAHULEA

APLICAȚII ALE REȚELELOR PETRI ÎN STUDIEREA

SISTEMELOR CU EVENIMENTE DISCRETE

Editura Gh. ASACHI 2002

OCTAVIAN PĂSTRĂVANU MIHAELA MATCOVSCHI CRISTIAN MAHULEA

APLICAȚII ALE REȚELELOR PETRI ÎN STUDIEREA SISTEMELOR CU EVENIMENTE DISCRETE

Editura Gh. ASACHI

2002

Editura "GH. ASACHI" Universitatea Tehnică Iași Bd. D. Mangeron nr. 67 6600, Iași, Romania Tel: 0232 – 23.13.43 Fax: 0232 – 21.42.90

Director editură:

Prof. univ. dr. ing. Mihail VOICU

Redactor:

Prof. Georgeta ANICULĂESEI

Referenți științifici:

Prof. univ. dr. ing. Mihail Voicu Prof. univ. dr. ing. Doru Pănescu

Colecția: Automatică și informatică industrială

Descrierea CIP a Bibliotecii Naționale a României PĂSTRĂVANU, OCTAVIAN Aplicații ale rețelelor Petri în studierea sistemelor cu evenimente discrete / Octavian Păstrăvanu, Mihaela Matcovschi, Cristian Mahulea – Iași: Editura Gheorghe Asachi, 2002. p.: cm. 16,5 x 22,5 ISBN: 973-8292-86-7 I. Matcovschi, Mihaela II. Mahulea, Cristian

517.938 681.5

© Octavian PĂSTRĂVANU, Mihaela MATCOVSCHI, Cristian MAHULEA Universitatea Tehnică "Gh. Asachi" Iași Facultatea de Automatică și Calculatoare Bd. D. Mangeron 53A, 6600 Iași email: opastrav@delta.ac.tuiasi.ro

Prefață

Ideea de a elabora lucrarea de față s-a conturat pe fondul evoluției, într-un ritm deosebit de alert, a domeniului sistemelor cu evenimente discrete, din dorința de a oferi un material care să furnizeze atât informații teoretice ample, cât și o bogată ilustrare a utilizării lor în practică. Deși, prin conținutul transmis, cartea posedă un caracter monografic, prin modul de structurare vizează, drept principal obiectiv, construirea raționamentelor științifice specifice domeniului, manipulând cunoștințele în contexte aplicative variate și relevante. Fiecare capitol al cărții conține un substanțial breviar teoretic, oferind cititorului toate noțiunile și rezultatele de bază care, ulterior, sunt angrenate în rezolvarea de probleme, soluțiile fiind analitice și/sau asistate de calculator. O contribuție deosebită la dezvoltarea abilităților de investigare este adusă de o serie de aplicații ce compară și corelează rezultatele rezolvărilor analitice și, respectiv, asistate de calculator.

În textele breviarelor teoretice, numerotarea relațiilor și figurilor este realizată cu un set de trei numere, precedat de abrevierea BT (Breviar Teoretic); primul număr coincide cu numărul capitolului, cel de al doilea este numărul secțiunii, iar cel de al treilea crește în secvență naturală. Similar, în textele aplicațiilor (enunțuri și soluții), numerotarea relațiilor și figurilor este realizată cu un set de trei numere, precedat de abrevierea AP (Aplicații); primul număr coincide cu numărul capitolului, cel de al doilea este numărul aplicației, iar cel de al treilea crește în secvență naturală.

În scopul abordării asistate de calculator a rezolvărilor a fost utilizat mediul Petri Net Toolbox, dezvoltat de autorii cărții pentru a rula sub MATLAB. Facilitățile acestuia sunt descrise în ultimul capitol, care reproduce forma originală, în limba engleză, a informațiilor din Help-ul respectivului software.

Întregul material a fost de așa manieră conceput încât să asigure adresabilitate pentru o sferă largă de cititori cu formație tehnico-științifică, incluzând specialiști, cercetători, cadre didactice, studenți și doctoranzi. Stilul de prezentare se concretizează într-o expunere autonomă, ce nu necesită alte lecturi în paralel, dar, totodată, cititorului preocupat de aprofundarea anumitor teme îi sunt indicate referințe bibliografice generoase. Modul de organizare al lucrării nu obligă la parcurgerea integrală a textului, permițând o lectură selectivă, orientată în conformitate cu nivelul de pregătire și problematica de interes a fiecărui cititor în parte, ghidarea realizându-se cu multă ușurință pe seama cuprinsului anume elaborat cu un grad relevant de detaliere. Pe lângă acest cuprins, o imagine generală despre modul de integrare a capitolelor cărții în economia de ansamblu rezultă din parcurgerea Capitolului 1.

În particular, lucrarea de față (în totalitate, ori anumite porțiuni ale ei) poate servi și drept suport pentru cursuri destinate studenților sau pentru cursuri de perfecționare destinate absolvenților, stilul de prezentare bazându-se pe principiile instruirii graduale, cu acordarea unei ponderi importante exemplelor, studiilor practice și utilizării facilităților software.

Pentru a reproduce soluțiile asistate de calculator din lucrare, sau pentru a dezvolta noi aplicații sub Petri Net Toolbox, cititorii se pot adresa autorilor cărții spre a intra în posesia unei versiuni de testare a acestui pachet, în regim gratuit.

Rod al unei colaborări de lungă durată dintre trei cadre didactice de la Catedra de automatică și informatică industrială a Universității Tehnice "Gh. Asachi" din Iași, prezenta lucrare pune în valoare atât viziunea proprie a autorilor, creată în urma consultării unui vast material bibliografic, cât și experiența dobândită de aceștia în utilizarea rețelelor Petri pentru modelarea, analiza și proiectarea sistemelor cu evenimente discrete. Cartea reflectă totodată și preocupările educaționale ale celor trei autori care au pregătit cursuri și ședințe de aplicații dedicate disciplinei Sisteme dinamice cu evenimente discrete existentă din anul 1996 în planurile de învățământ ale Facultății de Automatică și Calculatoare din Iași.

În încheiere, autorii doresc să își exprime gratitudinea față de cei doi referenți, ale căror personalități academice marcante au girat apariția acestei cărți, precum și față de colectivul Editurii "Gh. Asachi" care a inclus volumul în planul său editorial.

Publicarea cărții s-a bucurat de suportul financiar al Consiliului Național pentru Finațarea Învățamântului Superior, prin intermediul proiectului LICAP ("Laborator de instruire în domeniul conducerii asistate de calculator a proceselor").

Mulțumiri anticipate sunt adresate tuturor cititorilor, care, prin observațiile ce le vor formula în urma consultării acestei cărți, vor contribui la îndepărtarea unor posibile neajunsuri ale textului și la îmbunătățirea calității.

Noiembrie 2002

Autorii

Prefața	i
Cuprins	iii
Abstract and Contents	vii
Simboluri și notații	xi
Cap. 1. Introducere	1
Cap. 2. Modele de tip rețea Petri netemporizată	7
Breviar teoretic	7
BT2.1. Conceptul de rețea Petri netemporizată	7
BT2.2. Terminologie uzuală	
BT2.3. Validarea și executarea tranzițiilor în rețele cu	
capacitate infinită – evoluția stărilor	9
BT2.4. Unele extensii pentru rețele Petri netemporizate	
BT2.4.1. Rețele Petri cu capacitate finită	10
BT2.4.2. Rețele cu probabilități și priorități	10
BT2.4.3. Rețele cu arce inhibitoare	11
BT2.5. Modelarea cu rețele Petri ordinare	11
BT2.5.1. Structuri tipice utilizate în modelare	11
BT2.5.2. Capacitatea de modelare a unor subclase de rețele Petri ordinare	
Aplicații (AP2.1 – AP2.5)	14
Cap. 3. Studierea proprietăților comportamentale	27
Breviar teoretic	
BT3.1. Definirea proprietăților comportamentale	
BT3.1.1. Accesibilitate	
BT3.1.2. Mărginire	
BT3.1.3. Viabilitate	
BT3.1.4. Reversibilitate	
BT3.2. Producerea fenomenului de deadlock în sistemele cu resurse partajate	
BT3.3.Arbori și grafuri de acoperire/accesibilitate	
BT3.3.1. Arbori de acoperire/accesibilitate	
BT3.3.2. Grafuri de acoperire/accesibilitate	30

iv — Aplicații ale rețelelor Petri – O. Păstrăvanu, M. Matcovschi, C. Mahulea —	
BT3.4. Ecuatia de stare	30
BT3.5. Proprietăți ce decurg din apartenenta retelelor la anumite subclase	
de retele Petri ordinare	
BT3.5.1. Criterii de viabilitate și sigurantă a masinilor de stare	
BT3.5.2. Criterii de viabilitate și sigurantă a grafurilor marcate	
Aplicații (AP3.1 – AP3.6)	34
Cap. 4. Controlul procedural al sistemelor cu evenimente discrete	49
Breviar teoretic	49
BT4.1. Specificații de proiectare pentru structurile de conducere	49
BT4.2. Proiectarea structurilor de conducere prin tehnici de sinteză hibridă	50
BT4.2.1. Rafinarea operațiilor prin sinteză descendentă	50
BT4.2.1.1. Prezentarea generală a procedurii de rafinare	50
BT4.2.1.2. Module standard utilizate în rafinare	52
BT4.2.2. Atașarea resurselor prin sinteză ascendentă	55
BT4.2.2.1. Prezentarea generală a procedurii de atașare a resurselor	55
BT4.2.2.2. Detalierea Pasului 1 (atașarea resurselor specifice nepartajate)	55
BT4.2.2.3. Detalierea Pasului 2 (atașarea resurselor de stocare)	56
BT4.2.2.4. Detalierea Pasului 3 (atașarea resurselor specifice partajate)	58
BT4.3. Proprietăți caracteristice ale structurilor de conducere rezultate din sinteză	65
BT4.4. Funcțiuni de bază și considerații de proiectare ale controlerului procedural	66
BT4.4.1. Funcțiuni de bază	66
BT4.4.2. Considerații de proiectare	66
Aplicații (AP4.1 – AP4.3)	67
Cap. 5. Studierea proprietăților structurale	85
Breviar teoretic	85
BT5.1. Definirea proprietăților structurale și criterii de caracterizare	85
BT5.1.1. Mărginire structurală	85
BT5.1.2. Conservativitate	86
BT5.1.3. Repetitivitate	86
BT5.1.4. Consistență	87
BT5.1.5. Relații între proprietățile structurale	87
BT5.2. Invarianți	88
BT5.2.1. Definiția invarianților	88
BT5.2.2. Invarianți în rețele duale și/sau inversate	89
BT5.2.3. Criterii de caracterizare a invarianților și conexiuni cu	
proprietățile structurale	90
Aplicații (AP5.1 – AP5.4)	91
Cap. 6. Modele de tip rețea Petri cu temporizare deterministă	103
Breviar teoretic	103
BT6.1. Rețele cu tranziții temporizate	103
BT6.2. Rețele cu poziții temporizate	104

Cuprins	v
BT6.3. Transformarea unei rețele temporizate T într-o rețea temporizată P	105
BT6.4. Transformarea unei rețele temporizate P într-o rețea temporizată T	106
BT6.5. Comportarea periodică a rețelelor Petri acoperite de invarianți P,	
(parțial) consistente, temporizate <i>T</i>	107
BT6.6. Comportarea periodică a rețelelor Petri acoperite de invarianți P,	
(parțial) consistente, temporizate <i>P</i>	109
Aplicații (AP6.1 – AP6.8)	110
Cap. 7. Modele de tip rețea Petri cu temporizare stohastică	129
Breviar teoretic	129
BT7.1. Principiile temporizării stohastice	129
BT7.2. Variabile aleatoare - scurtă trecere în revistă	130
BT7.2.1. Variabile aleatoare	130
BT7.2.2. Funcție de repartiție. Densitate de repartiție	130
BT7.2.3. Funcții de variabile aleatoare	132
BT7.2.4. Caracteristici ale distribuțiilor de probabilitate	132
BT7.2.4.1. Valoare medie	132
BT7.2.4.2. Dispersie (varianță)	133
BT7.2.4.3. Moment de ordin p	134
BT7.2.4.4. Covarianță	134
BT7.2.5. Legea numerelor mari. Legi limită	135
BT7.2.6. Distribuții frecvent folosite în temporizarea stohastică	137
BT7.3. Procese stohastice.	137
BT7.4. Modele de tip rețea Petri cu temporizare stohastică	138
Aplicații (AP7.1 – AP7.5)	138
Cap. 8. Modele de tip rețea Petri stohastică	153
Breviar teoretic	153
BT8.1. Rețele Petri stohastice	153
BT8.2. Proprietăți ale legii de distribuție exponențială	154
BT8.3. Lanțuri Markov omogene, continue în timp	155
BT8.3.1. Concepte de bază	155
BT8.3.2. Analiza tranzițiilor de stare a unui lanț Markov continuu și omogen	157
BT8.4. Proprietăți ale rețelelor Petri stohastice	157
BT8.4.1. Construcția lanțului Markov asociat unei rețele Petri stohastice	157
BT8.4.2. Evaluarea performanțelor unei rețele Petri stohastice	158
BT8.4.3. Proprietăți de conservare	159
BT8.5. Rețele Petri stohastice generalizate	160
Aplicații (AP8.1 – AP8.4)	161
Cap. 9. Modele de tip max-plus	175
Breviar teoretic	175
BT9.1. Proprietăți fundamentale ale algebrei (max, +)	175
BT9.2 Operații cu matrice și vectori definiți pe algebra $(\mathbb{R} \cup \{-\infty\}, \max, +)$	176

vi — Aplicații ale rețelelor Petri – O. Păstrăvanu, M. Matcovschi, C. Mal	bulea ——
BT9.3 Reprezentări de stare în algebra max-plus pentru rețele Petri de ti	p graf marcat,
temporizate P	
BT9.4. Rezolvarea ecuației de stare	
BT9.5. Rezolvarea ecuației de ieșire	
Aplicații (AP9.1 – AP9.4)	
Cap. 10. Petri Net Toolbox – descriere și utilizare /	
Learning about Petri Net Toolbox	201
Introduction – Petri Net Toolbox at a First Glance	
Part I. Describing the Graphical User Interface (GUI)	
I.1. Overview	
I.2. Menu Bar	
I.3. Quick Access Toolbar	
I.4. Drawing Area	
I.5. Drawing Panel	
I.6. Draw/Explore Switch	
I.7. Simulation Panel	
I.8. Status Panel	
I.9. Message Box	
Part II. Exploiting the Toolbox	
II.1. Building a Model	
II.2. Exploring Properties	
II.3. Running a Simulation	
II.4. Analyzing Simulation Results	
II.5. Max-Plus Models	
II.6. Design	
Appendix 1: XML file-format of a file containing a PN model	
Appendix 2: Configuration File for the Petri Net Toolbox	
Bibliografie	
Index și dicționar român-englez	

APPLICATIONS OF PETRI NETS IN STUDYING DISCRETE EVENT SYSTEMS

Abstract and Contents

The book constructs a theoretical and practical framework, based on Petri net models, for exploring event-driven dynamics. This framework encompasses both untimed and timed Petri nets, the usage of the key concepts and results being illustrated by problems with analytical or computer-aided solutions. For computational approaches, the software environment *Petri Net Toolbox*, developed by the authors to ensure full compatibility with MATLAB, has been used. The last chapter creates an overview of the capabilities and exploitation of this software. The book is self-contained, but the bibliographic list suggests numerous works recommended for getting a deeper insight into this field. The book was designed to answer the instructional needs for a large area of potential beneficiaries, namely people interested in a gradual and methodological training in discrete-event systems, which obviously includes undergraduate, postgraduate and doctoral students, as well as research workers and practitioners.

Preface	i
Contents (in Romanian)	iii
Abstract and Contents (in English)	vii
Symbols and Notations	xi
Chapter 1. Introduction	1
Chapter 2. Untimed Petri Net Models	7
Theory	7
BT2.1. The concept of untimed Petri net	7
BT2.2. Terminology and basic concepts	8
BT2.3. Transition enabling and firing in infinite-capacity Petri nets - State evolution	9
BT2.4. Extensions of untimed Petri nets	10
BT2.4.1. Finite-capacity Petri nets	10
BT2.4.2. Nets with probabilities and priorities	10
BT2.4.3. Nets with inhibitor arcs	11
BT2.5. Modeling with ordinary Petri nets	11
BT2.5.1. Typical structures used in modeling with Petri nets	11
BT2.5.2. Some subclasses of ordinary Petri nets and their modeling power	12
Applications (AP2.1 – AP2.5)	14

Chapter 3. An	alysis Techniques for Behavioral Properties	
Theory		
BT3.1. Defi	nitions of the behavioral properties	
BT3.1.1.	Reachability	••••
BT3.1.2.	Boundedness	
BT3.1.3.	Liveness	•••
BT3.1.4.	Reversibility	•••
BT3.2. Dead	llock in systems with shared resources	••••
BT3.3. Cove	erability/accessibility trees and graphs	••••
B13.3.1.	Coverability/accessibility trees	••••
B13.3.2.	Coverability/accessibility graphs	••••
BT3.4. State	equation	••••
B13.5. Beha	ivioral properties induced by membership in some subclasses	
of ordin	ary Petri nets	
BT3.5.1.	Criteria for liveness and safeness of state machines	•••
B13.5.2.	Criteria for liveness and safeness of marked graphs	•••
	M 3.1 – AI 3.0)	•••
Chapter 4. Pro	ocedural Control of Discrete Event Systems	• • • •
Theory		••••
BT4.1. Desi	gn specifications for the control structure	•••
BT4.2. Hybr	rid synthesis techniques	••••
BT4.2.1.	Refinement of the operation places by top-down synthesis	•••
BT4.2	.1.1. Overview of the procedure	
BT4.2	.1.2. Standard modules used in the refinement	•••
BT4.2.2.	Addition of the resource places by bottom-up synthesis	•••
BT4.2	.2.1. Overview of the procedure	•••
BT4.2	.2.2. Detailing Step 1 (addition of the nonshared resource places)	•••
BT4.2	.2.3. Detailing Step 2 (addition of the buffer places)	•••
BT4.2	.2.4. Detailing Step 3 (addition of the shared resource places)	•••
BT4.3. Char	acteristic properties of the control structures resulted from synthesis	••••
BT4.4. Basi	c actions and design issues of the procedural controller	•••
BT4.4.1.	Basic actions	•••
BT4.4.2.	Design issues	•••
Applications (A	AP4.1 – AP4.3)	•••
Chapter 5. An	alysis Techniques for Structural Properties	
Theory	· · · · ·	
BT5.1. Defi	nitions of the structural properties and criteria for their characterization	
BT5.1.1.	Structural liveness	
BT5.1.2.	Conservativeness	
BT5.1.3.	Repetitiveness	
BT5.1.4.	Consistency	
DE5 1 5	Deletionshing between the structural properties	

——————————————————————————————————————	— ix
DT5 2 Inverients	00
DIS.2. Invariants	00
BT5.2.1. Definition of the invariants	00
DT5.2.2. Invaliants in reverse-dual nets	89
to structural properties	00
Applications (AD5.1 AD5.4)	90
Applications (AF 5.1 – AF 5.4)	91
Chapter 6. Deterministic Timed Petri Net Models	103
Theory	103
BT6.1. Transition-timed nets	103
BT6.2. Place-timed nets	104
BT6.3. Transforming a <i>T</i> -timed net into a <i>P</i> -timed net	105
BT6.4. Transforming a <i>P</i> -timed net into a <i>T</i> -timed net	106
BT6.5. Periodic behavior of <i>T</i> -timed, (partially) consistent Petri nets, covered by <i>P</i> -	
invariants	107
BT6.6. Periodic behavior of <i>P</i> -timed, (partially) consistent Petri nets, covered by <i>P</i> -	
invariants	109
Applications (AP6.1 – AP6.8)	110
Chapter 7. Stochastic Timed Petri Net Models	129
Theory	129
BT7.1. Principles of stochastic timing	129
BT7.2. Random variables – overview	130
BT7.2.1. Random variables	130
BT7.2.2. Cumulative distribution function. Probability density function	130
BT7.2.3. Functions of random variables	132
BT7.2.4. Characteristics of probability distributions	132
BT7.2.4.1. Mean value (expectation)	132
BT7.2.4.2. Variance	133
BT7.2.4.3. <i>k</i> -th order moment	134
BT7.2.4.4. Covariance	134
BT7.2.5. Law of large numbers. Limit Theorems	135
BT7.2.6. Probability distributions frequently used in stochastic timing	137
BT7.3. Stochastic processes.	137
BT7.4. Stochastic timed Petri nets	138
Applications (AP7.1 – AP7.5)	138
Chapter & Stochastic Patri Nat Madala	150
Theory	153
DT9 1 Stachastic Datri Nota	133
D 10.1. Stochastic Petri Inets	133
B 18.2. Properties of the exponential distribution	154
B18.5. Continuous time nomogenous Markov chains	155
B18.3.1. Basic concepts	155

X	——————————————————————————————————————	
	BT8.3.2. Analysis of state transitions for continuous time homogenous	
	Markov chains	157
	BT8.4. Properties of stochastic Petri nets	157
	BT8.4.1. Construction of the Markov chain associated with a stochastic Petri net	157
	BT8.4.2. Performance evaluation of a stochastic Petri net	158
	BT8.4.3. Conservativeness properties	159
	BT8.5. Generalized stochastic Petri nets	160
A	oplications (AP8.1 – AP8.4)	161
Cl	napter 9. <i>Max-plus Models</i>	175
Tł	neory	175
	BT9.1. Basic properties of the (max, +) algebra	175
	BT9.2. Operations with vectors and matrices over the $(\mathbb{R} \cup \{-\infty\}, \max, +)$ algebra	176
	BT9.3. State-space representations over the max-plus algebra	
	for <i>P</i> -timed marked graphs	178
	BT9.4. Solving the state equation	181
	BT9.5. Solving the output equation.	185
Aj	pplications ($\overrightarrow{AP9.1} - \overrightarrow{AP9.4}$)	186
Cl	papter 10 Petri Net Toolbor - overview and utilization /	
CI	Learning about Petri Net Toolbox	201
In	troduction – Petri Net Toolbox at a First Glance	201
Pa	rt I. Describing the Graphical User Interface (GUI)	201
1 0	11 Overview	204
	I 2 Menu Bar	204
	I.2. Menu But	204
	I 4 Drawing Area	208
	I.5 Drawing Panel	208
	I.6. Draw/Explore Switch	208
	I 7 Simulation Panel	200
	I 8 Status Panel	209
	I 9 Message Box	209
Pa	rt II Exploiting the Toolbox	210
1 4	II 1 Building a Model	210
	II 2 Exploring Properties	216
	II 3 Running a Simulation	217
	II 4 Analyzing Simulation Results	221
	II 5 Max-Plus Models	222
	II.6. Design	
A۱	ppendix 1: XML file-format of a file containing a PN model	225
A	ppendix 2: Configuration File for the Petri Net Toolbox	229
בת	blicguaphy	221
Bl L-	onography	231
1N	aex ana Komanian-English Dictionary	233

Simboluri și notații

- \mathbb{R} mulțimea numerelor reale
- \mathbb{N} mulțimea numerelor naturale (inclusiv 0)
- \mathbb{Z} mulțimea numerelor întregi
- \in apartenență
- ⊂ incluziune strictă
- \subseteq incluziune cu posibilitate de egal
- $*^{T}$ transpusa matricei *

rang* – rangul matricei *

- |*| cardinalitatea mulțimii * x < y – inegalități < pe toate componentele
- vectorilor x, y
- $x \le y$ inegalități \le pe toate componentele vectorilor x, y
- x <≠ y inegalități ≤ pe toate componentele
 vectorilor x, y, cu cel puțin o inegalitate
 strictă (<)
- $x \ge y$ inegalități \ge pe toate componentele vectorilor x, y, cu cel puțin o inegalitate strictă (>)
- $P = \{p_1, ..., p_m\}$ mulțimea pozițiilor unei retele Petri
- $T = \{t_1, ..., t_n\}$ mulțimea tranzițiilor unei rețele Petri
- $W(t_i, p_i)$ ponderea arcului de la t_i la p_i
- $W(p_i, t_i)$ ponderea arcului de la p_i la t_i
- $M \in \mathbb{Z}^m$ vectorul de marcaj
- $M(p_i) \in \mathbb{N}$ marcajul poziției p_i

 $M_0 \in \mathbb{Z}^m$ – vectorul marcajului inițial

 $M_0(p_i) \in \mathbb{Z}$ – marcajul inițial al poziției p_i

- N-topologia unei rețele Petri
- (N, M_0) topologia unei rețele Petri cu un marcaj inițial dat

- <*> suportul invariantului * (de tip *P* sau *T*) al unei rețele Petri
- * mulțimea predecesor (mulțime de tranziții, respectiv poziții) a mulțimii * (mulțime de poziții, respectiv tranziții)
- *• mulțimea succesor (mulțime de tranziții, respectiv poziții) a mulțimii * (mulțime de poziții, respectiv tranziții)
- $\sigma = t_{i_1} t_{i_2} \dots t_{i_k}$ secvență de executări de tranziții fără precizarea vectorilor de marcaj accesați
- $\sigma = t_{i_1}M_1t_{i_2}M_2...t_{i_k}M_k$ secvență de executări de tranziții, cu precizarea vectorilor de marcaj accesați
- $\overline{\sigma} \in \mathbb{Z}^n$ vectorul numărului de executări de tranziții din secvența σ
- $\overline{\sigma}(t_i)$ numărul de executări ale tranziției t_i din secvența σ
- $R(M_0), R(N, M_0)$ mulțimea de accesibilitate corespunzătoare unui marcaj inițial dat
- $L(M_0), L(N, M_0)$ mulțimea tuturor secvențelor de executări de tranziții, pornind dintr-un marcaj inițial dat.
- $M_0[\sigma > M_k \text{vectorul de marcaj } M_k \text{ este}$ accesibil din vectorul de marcaj M_0 prin secvența de executări de tranziții σ

 $K(p_i)$ – capacitatea poziției p_i

- ω simbol utilizat în construcția arborilor sau grafurilor de acoperire pentru rețelele nemărginite
- $C(t_{i1}, t_{i2})$ capacitatea de jetoane dintre tranzițiile t_{i1}, t_{i2}

- $A^{-} \in \mathbb{Z}^{n \times m}$ matricea de incidență de intrare asociată unei rețele Petri
- $A^+ \in \mathbb{Z}^{n \times m}$ matricea de incidență de ieșire asociată unei rețele Petri
- $A = A^+ A^- \in \mathbb{Z}^{n \times m}$ matricea de incidență asociată unei rețele Petri
- u_k vector de executare (de control)
- C circuit orientat
- $M(C_k)$ numărul total de jetoane aflate pe circuitului C_k în marcajul M
- $M_0(C_k)$ numărul total de jetoane aflate pe circuitului C_k în marcajul inițial M_0

 $D(C_k)$ – întârzierea totală pe circuitul C_k

 Ω – spațiul eșantioanelor (mulțimea tuturor realizărilor posibile ale unui experiment)

 \mathbb{E} – spațiul evenimentelor

- P funcția de probabilitate
- (Ω, \mathbb{E}, P) câmp de probabilitate

- P[A | B] probabilitatea condițională de apariție a evenimentului A în ipoteza că s-a produs evenimentul B
- X-variabilă aleatoare
- F funcția de repartiție a unei variabile aleatoare
- *p* densitatea de repartiție a unei variabile aleatoare discrete
- f densitatea de repartiție a unei variabile aleatoare continue
- M[X] valoarea medie a variabilei aleatore X
- Var[X] *dispersia* (*varianța*) variabilei aleatoare X
- σ_X –deviație standard a variabilei aleatoare X
- \oplus operație definită pe $\mathbb{R} \cup \{-\infty\}$ prin $a \oplus b = \max\{a, b\}$
- \otimes operație definită pe $\mathbb{R} \cup \{-\infty\}$ prin $a \otimes b = a + b$

Capitolul 1

Introducere

La nivelul introductiv pe care și-l propune acest capitol, convenim ca, în funcție de contextul exprimării, prin *sistem cu evenimente discrete* să înțelegem fie un sistem real, fie un model matematic (ce descrie funcționarea unui sistem real), a cărui evoluție este raportată la apariția unor evenimente. Astfel, producerea evenimentelor joacă rolul de *cauză* pentru dinamica sistemului și are drept *efect* modificare stărilor sistemului, evidențiind o certă similitudine cu așa-numita "tratare pe stare" a sistemelor continue sau discrete în timp. Mai mult chiar, și în cazul unui sistem cu evenimente discrete se poate vorbi despre o *funcție de tranziție a stărilor*, care formalizează riguros faptul că sistemul trece dintr-o stare în alta numai ca urmare a producerii unui eveniment și că sistemul păstrează starea în care se află până la producerea unui nou eveniment.

Analogia cu sistemele continue sau discrete în timp, pe care le vom referi sub numele de "sisteme clasice" trebuie însă utilizată concomitent cu înțelegerea corectă și completă a deosebirilor privind interpretarea cauzală a comportării. Dacă în cazul sistemelor clasice, cauzele și efectele sunt valorile unor semnale, care, cel puțin sub raport teoretic, prin variații acoperă intervale (adică mulțimi cu aceeași cardinalitate ca \mathbb{R}), în cazul sistemelor cu evenimente discrete, *mulțimea evenimentelor* ce pot apărea, precum și *mulțimea stărilor* în care poate tranzita sistemul sunt *discrete* (adică au cel mult cardinalitatea lui \mathbb{N}). Dacă dinamica sistemelor clasice este raportată la un *ceas sincron* ce măsoară scurgerea uniformă a timpului (continuu, sau discret - eșantionat cu o anumită perioadă), dinamica sistemelor cu evenimentelor și, nu în mod obligatoriu, momentele de producere a lor. În cosecință, modelele de tip ecuații diferențiale sau cu diferențe ce populează literatura sistemelor clasice s-au dovedit neadecvate pentru descrierea dinamicilor pilotate de evenimente, motiv pentru care a fost necesar să se recurgă la instrumente matematice de altă factură.

Sistemele cu evenimente discrete s-au individualizat ca direcție proprie de cercetare în ultimii 10-15 ani, având un impact considerabil asupra dezvoltării tehnologice din diverse arii ale ingineriei, cum ar fi: sisteme de fabricație, sisteme de transport, sisteme de comunicații, sisteme de operare și platforme software dedicate, precum și asupra controlului de tip procedural a numeroase clase de procese automatizate. În perioada mai sus amintită, domeniul Sistemelor cu evenimente discrete s-a fondat dintrun nucleu interdisciplinar, construit prin aportul a grupuri de cercetători cu formații stiintifice diferite și alimentat de o serie de resurse distincte din spatiul informaticii teoretice și a matematicilor aplicate, dintre care cele mai importante ar fi: teoria automatelor și a limbajelor formale, teoria rețelelor Petri, teoria sistemelor de așteptare, teoria algebrică a sincronizării, analiza perturbațiilor (Cao and Ho, 1990). În acest context heterogen, este dificil și poate chiar hazardat a localiza, în timp, un anumit moment sau o anumită lucrare, de ale căror semnificații să se lege actul de naștere al noului domeniu. Există însă câteva contribuții de pionierat care au precizat ferm conexiunile cu descrierile și principiile generale ce guvernează sistemele dinamice și care, astfel, au deschis perspectiva ca ansamblul preocupărilor din domeniu să poată fi încadrat în amplul edificiu al Științei sistemelor, drept o nouă entitate, recte Sisteme cu evenimente discrete. Dintre respectivele lucrări amintim: (Ho and Cassandras, 1983), (Cohen et al., 1985), (Ramadge and Wonham, 1987).

Astăzi, în urma unui proces de maturizare alert, însoțit de numeroase succese pe plan teoretic și aplicativ, domeniul *Sistemelor cu evenimente discrete* a dobândit o recunoaștere generală ca direcție de cercetare pe deplin conturată, figurând la poziția 93C65 în clasificarea comună realizată în anul 2000 de către prestigioasele publicații "Zentralblatt MATH" și "Mathematical Reviews". Cu toate acestea, istoria relativ recentă a domeniului face însă ca nici în prezent să nu dispunem de un suport teoretic unificat, capabil de a asigura compatibilitatea între metodologiile de sorginte matematică diferită, enumerate în paragraful anterior. În sensul unei atare unificări, pași notabili au fost realizați de (Bacelli, 1992), (Cassandras, 1993), (Cassandras et al., 1995), (Lewis et al., 1995).

Cum era de așteptat, drumul până la conturarea unui punct de vedere teoretic atotcuprinzător scoate la lumină multiple dificultăți în construirea punților de legătură, un rol însemnat jucându-l și inerenta atitudine de conservare a tradițiilor de cercetare manifestată de diferite colective. Deși la nivel general, atare punți deja există, preferința pentru un anumit instrument de investigare este uzual motivată de specificul problematicii și de experiența acumulată în abordarea acelei problematici.

Concomitent cu progresul Sistemelor cu evenimente discrete ca domeniu de cercetare, acest domeniu și-a făcut apariția și ca obiect de studiu în planurile de învățământ ale universităților occidentale, americane și japoneze, fiind binecunoscut

dinamismul lor în preluarea și diseminarea noutăților științifice. Urmare a heterogenității domeniului însuși, cursurile respective se caracterizează printr-o varietate destul de mare a modalităților de tratare. Totodată, ședințele de aplicații ce acompaniază orele de predare a noțiunilor teoretice sunt orientate pe diferite medii software ce permit simularea, analiza și sinteza sistemelor cu evenimente discrete. Fiecare dintre aceste medii exploatează un anumit suport teoretic, actualmente existând instrumente fiabile, produse de firme cu experiență, care se bazează pe teoria automatelor (ca de exemplu State-Flow (MathWorks, 1997)), pe teoria rețelelor Petri (ca de exemplu software-urile prezentate în (Mortensen, 2003)), pe teoria sistemelor de așteptare (ca de exemplu ARENA (Kelton et al., 2002), pe teoria algebrică a sincronizării (ca de exemplu Scilab (Cohen et al., 2001)).

Pornind de la realitatea curentă a domeniului (atât din perspectiva științifică cât și didactică), am considerat că elaborarea unei lucrări cu caracter monografic, care să asigure, deopotrivă, accesibilitatea lecturii pentru cititorii nefamiliarizați cu problematica studiată, trebuie să permită o incursiune cât mai completă în universul *Sistemelor cu evenimente discrete*, realizată gradual, ghidată într-o manieră unică sub raportul informațiilor și al limbajului de exprimare. Astfel, am decis să structurăm materialul pe fundamentul teoretic al rețelelor Petri, care, pe parcursul celor patru decenii scurse de la prezentarea tezei de doctorat a matematicianului german Carl Adam Petri (Petri, 1962), au demonstrat o deosebită flexibilitate în abordarea a numeroase tipuri de probleme practice, precum și o mare capacitate de extindere ca sferă de operare, prin înglobarea unor puncte de vedere tot mai complexe.

Rețelele (grafurile) propuse în (Petri, 1962) dispuneau de un mecanism capabil de a guverna, pe principiile algebrei boolene, evoluția unui vector cu elemente numere naturale, având semnificație de stare, fără precizarea momentelor efective de timp când aveau loc modificările stării. Cercetările ulterioare au condus și la încorporarea informațiilor temporale (Ramamoorthy and Ho, 1980), (Ajmone Marsan et al., 1985), astfel încât, în prezent, pentru studierea sistemelor cu evenimente discrete, avem la dispoziție modele de tip rețea Petri netemporizată (care permit studii calitative) și, respectiv, de tip rețea Petri temporizată (care permit studii calitative). Introducerea temporizării s-a realizat de așa manieră încât să permită nuanțările de model determinist sau stohastic, binecunoscute din cazul sistemele clasice.

Aceste rafinări ale conceptului inițial formulat de Petri (rafinări care nu includ, în totalitate, extinderile propuse în literatură) evidențiază atât resursele oferite pentru modelare, cât și compatibilitatea cu alte instrumente și tipuri de modele. Rețelele Petri pot modela fenomenele specifice sistemelor cu evenimente discrete, cum ar fi succesiunea (o evoluție succede alteia), alegerea sau conflictul (selectarea uneia din mai multe posibilități de evoluție), concurența (startarea unor evoluții paralele), sincronizarea (încheierea unor evoluții paralele), excluderea mutuală (condiționarea reciprocă a unor evoluții), care pot fi

3

formulate în contexte temporizate sau netemporizate. Pe de altă parte, informațiile conținute de alte modalități de descriere a dinamicii sistemelor cu evenimente discrete (automate, sisteme de așteptare, reprezentări de stare max-plus) pot fi grefate cu ușurință pe arhitectura modelelor de tip rețea Petri. În plus, studiul rețelelor Petri este uzual acompaniat de o abordare la nivel vizual, prin reprezentări grafice expresive. Drept urmare, literatura de specialitate raportează o largă utilizare a rețelelor Petri în modelare, analiză și proiectare, acoperind o arie semnificativă de procese controlate secvențial, de la dinamica unor entități individuale (David et Alla, 1992), (Zurawski and Zhou, 1994), la dinamica unor entități colective (sisteme mari – eng. *large scale systems*), ca de exemplu, sisteme hardware și software (Peterson, 1981), (Levi and Agrawala, 1990), procese chimice (Yamalidou et al., 1990), sisteme de fabricație (Desrochers and Al-Jaar, 1993), (Zhou and DiCesare, 1993), (Lewis et al., 1995), roboți și sisteme de transport (Freedman, 1991), (Cassandras et al., 1995), sisteme de comunicații (Nissanke, 1997).

Lucrarea noastră caută să ilustreze pe parcursul a opt capitole cele mai importante dintre aspectele punctate anterior. Modul de înlănțuire al capitolelor a avut în vedere creșterea treptată a complexității problematicii, precum și posibilitatea stabilirii unor conexiuni relevante inter-capitole. S-a reușit, astfel, o acoperire a elementelor definitorii pentru formalismul rețelelor Petri și utilizarea acestuia în practică, contextului netemporizat fiindu-i alocate primele cinci capitole, iar contextului temporizat, următoarele trei capitole.

Contextul netemporizat tratează modelarea, analiza și proiectarea din perspectiva dinamicilor coordonate doar la nivel logic, momentele de apariție a evenimentelor fiind ordonate ca succesiune, dar fără precizarea lor concretă și fără utilizarea unor durate concrete de timp. În context temporizat, modelarea, analiza și proiectarea includ informații concrete privind momentele și/sau duratele de timp, considerate de natură deterministă sau stohastică.

În linii mari vorbind, proprietățile calitative ce fac obiectul tehnicilor de analiză și sinteză pe modele netemporizate sunt robuste în raport cu orice variație de factură temporală și se referă la funcționarea ansamblului sistemic fără incidente de procedură tehnică (într-o manieră repetabilă, fără aglomerări sau blocări în realizarea serviciilor). Pe de altă parte, analiza și sinteza pe modele temporizate vizează proprietățile cantitative în sensul de indici de performanță asociabili unor criterii de eficiență economică (de tipul servicii realizate în unitatea de timp, grad de ocupare a prestatorilor de servicii etc.).

Fiecare din cele opt capitole conține un breviar teoretic urmat de un număr de aplicații ce exemplifică conceptele, rezultatele și metodele din breviar. În aplicații se face apel atât la rețele Petri fără semnificații de modele ale unor dinamici reale (ce permit exersarea noțiunilor teoretice), cât și la rețele Petri care modelează funcționarea unor sisteme fizice (ce asigură ancorarea cunoștințelor teoretice pe terenul intuiției fenomenologice). Pentru aceleași sistemele fizice sunt construite inițial modele netemporizate concentrând atenția asupra proprietăților comportamentale și structurale, iar ulterior se adaugă informații legate de timp, spre a utiliza modelele temporizate în investigații cantitative. Soluțiile prezentate pentru aplicații au în vedere, deopotrivă, varianta analitică și cea asistată de calculator; în general, pentru aplicațiile de complexitate redusă sunt date rezolvări analitice, pentru aplicațiile de complexitate medie sunt date rezolvări analitice și asistate de calculator, iar pentru aplicațiile de complexitate mare sunt date numai rezolvări asistate de calculator.

Pentru studiile prin simulare precum și pentru rezolvarea asistată de calculator a aplicațiilor se utilizează software-ul *Petri Net Toolbox* (Mahulea et al., 2001), (Matcovschi et al., 2002), (Matcovschi et al., 2003), proiectat, implementat și testat în cadrul Catedrei de Automatică și Informatică Industrială a Facultății de Automatică și Calculatoare din Iași. Acest software a fost anume conceput pentru exploatare sub mediul MATLAB care este familiar instruirii în Automatică. Ajuns deja la versiunea 2.0, el oferă o interfață cu utilizatorul foarte prietenoasă ce asigură definirea rețelelor sub formă grafică, simularea cu facilități multiple de animație și accesul la instrumente de analiză și sinteză ce acoperă toate dezvoltările teoretice din prezenta lucrare.

Ultimul capitol al lucrării realizează o trecere în revistă a principalelor caracteristici ale software-ului *Petri Net Toolbox*, în limba engleză, urmărind structura de informații disponibilă în Help-ul on-line al produsului. După cunoștințele noastre, *Petri Net Toolbox* este singurul produs disponibil sub MATLAB care utilizează rețelele Petri în explorarea sistemelor cu evenimente discrete, exceptând două pachete elaborate recent, și anume (Svádová and Hanzálek, 2001), care nu posedă interfață grafică proprie, utilizând interfața software-ului Petri-Maker (Mortensen, 2003), și (Iordache and Antsaklis, 2002), care nu are nici un fel de interfață grafică, topologiile rețelelor fiind descrise direct matriceal.

Elaborată în spiritul tendințelor actuale de cercetare și educație din domeniul sistemelor cu evenimente discrete, cartea are un pronunțat caracter de originalitate pentru literatura tehnică din România, raportată la lucrările existente cu tematică asemănătoare (Stănescu et al., 1996), (Leția și Aștilean, 1998), (Jucan și Țiplea, 1999), (Mânzu și Cernega, 2001). Acest caracter rezultă din ponderea acordată aplicațiilor, din maniera lor de prezentare detaliată (menită să ilustreze atât tratarea analitică, cât și modul de implicare a software-ului) și din rolul jucat de *Petri Net Toolbox* ca instrument ce extinde substanțial aria de exploatare a MATLAB-ului. Totodată precizăm faptul că tehnicile ilustrate prin aceste aplicații nu fac uz de întreaga instrumentație pusă la dispoziție de teoria rețelelor Petri, ci, ca urmare a unei selecții judicioase, se concentrează pe acele abordări a căror eficiență a fost validată de un număr mare de implementări practice, raportate în literatură. Consecvenți ideii de a menține accesibilitatea și complexitatea noțiunilor teoretice

la un nivel mediu, am procedat la excluderea unor tematici mai dificile, care sunt referite frecvent drept extensii ale formalismului de bază al rețelelor Petri, cum ar fi: rețele Petri colorate (pentru care recomandăm cititorului lucrările (Jensen, 1992, 1994, 1997)), rețele Petri interpretate, continue și hibride (pentru care recomandăm cititorului lucrarea (David et Alla, 1992)), rețele Petri în supervizare (pentru care recomandăm cititorului lucrarea (Antsaklis and Moody, 1998).

În conceperea, structurarea și realizarea acestei cărți, o contribuție majoră a avut lucrarea (Pastravanu, 1997) pe baza căreia s-au organizat cursul și ședințele de aplicații la disciplina *Sisteme dinamice cu evenimente discrete* de la Facultatea de Automatică și Calculatoare din Iași. Ședințele de aplicații respective au oferit și cadrul necesar pentru verificarea robusteții software-ului *Petri Net Toolbox* și pentru validarea pe o baterie largă de teste a algoritmilor implementați.

Capitolul 2

Modele de tip rețea Petri netemporizată

Breviar teoretic

BT2.1. Conceptul de rețea Petri netemporizată

O rețea Petri (eng. Petri net) se compune dintr-un tip particular de graf orientat notat N și o stare inițială M_0 , denumită marcaj inițial (eng. initial marking).

Graful N al rețelei Petri este orientat, ponderat și bipartit, constând din două tipuri de noduri, denumite *poziții* sau *locații* (eng. *place*) și respectiv *tranziții* (eng. *transition*); *arcele orientate* (eng. *arc*) unesc fie o poziție cu o tranziție, fie o tranziție cu o poziție. Nu există arce care să conecteze două poziții între ele, sau două tranziții între ele. Ca simbolizare grafică, pozițiile se reprezintă prin cercuri, iar tranzițiile prin bare sau dreptunghiuri. Arcele sunt etichetate cu ponderile lor (eng. *weight*) (valori întregi, pozitive); un arc cu ponderea k poate fi privit ca o mulțime de k arce paralele cu pondere unitară. Etichetele pentru pondere unitară se omit în reprezentările grafice uzuale.

Un marcaj sau o stare atribuie fiecărei poziții un număr întreg mai mare sau egal cu 0. Dacă un marcaj atribuie poziției p întregul $k \ge 0$, se spune că p este marcată cu k jetoane (eng. token). Din punct de vedere grafic, în cercul corespunzător poziției p se vor plasa kdiscuri. Orice marcaj M este un vector coloană m-dimensional, unde m notează numărul total al pozițiilor. Componenta i a vectorului $M = [M(p_1) \ M(p_2) \ \dots \ M(p_m)]^T$, notată $M(p_i)$ reprezintă numărul de jetoane din poziția p_i . Din motive de concizie a scrierii, în unele capitole ale acestei cărți un marcaj M va fi, de asemenea, reprezentat prin m-uplul $M = (M(p_1), \ M(p_2), \ \dots, \ M(p_m))$.

Aspectele prezentate anterior se formalizează matematic prin următoarea definiție.

O rețea Petri este un cvintuplu, $PN = (P, T, F, W, M_0)$ în care:

- $P = \{p_1, p_2, ..., p_m\}$ este mulțimea pozițiilor sau locațiilor (finită);
- $T = \{t_1, t_2, \dots, t_n\}$ este mulțimea tranzițiilor (finită);
- $F \subseteq (P \times T) \bigcup (T \times P)$ este mulțimea arcelor;
- $W: F \rightarrow \{1, 2, 3, ...\}$ este funcția de ponderare a arcelor;
- $M_0: P \rightarrow \{0, 1, 2, 3, ...\}$ este funcția de marcaj inițial.

Câteva comentarii sunt necesare pentru a aprofunda detaliile acestei formalizări:

- 1. Mulțimile *P* și *T* sunt disjuncte, $P \cap T = \emptyset$.
- 2. Pentru a asigura obiectul definiției de mai sus, mulțimile P și T satisfac condiția $P \bigcup T \neq \emptyset$.
- 3. Definiția funcției de ponderare se poate extinde pe mulțimea tuturor perechilor ordonate din (P×T)∪(T×P), considerând W:(P×T)∪(T×P)→ {0,1,2,3,...}, cu observația că, pentru acele perechi care nu sunt în mulțimea F, valoarea funcției W este 0 şi aceste perechi nu sunt reprezentate grafic. Mulțimea F corespunde perechilor a căror pondere este nenulă şi numai acestea sunt reprezentate grafic.
- 4. Definiția unei rețele Petri consideră implicit că toate pozițiile rețelei pot conține un număr oricât de mare de jetoane. Se spune că rețeaua este cu *capacitate infinită*.
- 5. O structură de rețea Petri N = (P, T, F, W) fără nici o specificație referitoare la marcaj se va nota cu N, notație care desemnează *topologia rețelei*.
- 6. O rețea Petri cu un marcaj inițial M_0 se va nota prin (N, M_0) .
- 7. O rețea Petri cu un marcaj oarecare M se va nota prin (N, M).

În problemele de modelare ce utilizează conceptele de *condiții* și *evenimente*, pozițiile reprezintă condiții și tranzițiile reprezintă evenimente. O tranziție (eveniment) posedă un număr de poziții de intrare și ieșire, care reprezintă *pre-condiții* și respectiv *post-condiții* pentru evenimentul în cauză. Prezența unui jeton într-o poziție trebuie înțeleasă ca valoare logică "adevărat" pentru condiția asociată respectivei poziții.

BT2.2. Terminologie uzuală

Dacă o poziție *p* este atât poziție de intrare, cât și de ieșire pentru o tranziție *t*, atunci *p* și *t* formează o *buclă autonomă* (eng. *self-loop*). O rețea Petri care nu conține bucle autonome se numește *pură* (eng. *pure*). O buclă autonomă poate fi întotdeauna transformată într-o buclă neautonomă prin adăugarea simultan a unei poziții și a unei tranziții formale (eng. *dummy*). Orice rețea impură poate fi transformată într-o rețea pură.

O rețea Petri se numește *ordinară* (eng. *ordinary*) dacă toate arcele sale au pondere unitară. Dacă într-o rețea Petri există cel puțin un arc a cărui pondere este mai mare decât 1, atunci se spune că rețeaua respectivă este *generalizată*.

Fie F mulțimea tuturor arcelor unei rețele Petri N. Se numesc *mulțime predecesor* (eng. *pre-set*) și *mulțime succesor* (eng. *post-set*) *a tranziției t* (fig. BT2.2.1.(a)) două mulțimi de poziții definite prin:

• $t = \{p \mid (p,t) \in F\}$ = mulțimea tuturor pozițiilor de intrare ale lui t;

și, respectiv, prin:

 $t^{\bullet} = \{ p \mid (t, p) \in F \} =$ mulțimea tuturor pozițiilor de ieșire ale lui t.

Se numesc *mulțime predecesor* și *mulțime succesor a poziției p* (fig. BT2.2.1.(b)) două mulțimi de tranziții definite prin:

• $p = \{t | (t, p) \in F\}$ = mulțimea tuturor tranzițiilor de intrare ale lui p; și, respectiv, prin:

 $p^{\bullet} = \{t \mid (p,t) \in F\} =$ mulțimea tuturor tranzițiilor de ieșire ale lui p.

Cap. 2. Modele de tip rețea Petri netemporizată

(a) Mulțimile de poziții t și t; (b) Mulțimile de tranziții p și p.

Același mod de notare, și anume {*}, {*} , se utilizează pentru a desemna mulțimea predecesor și, respectiv, succesor a unei *mulțimi de tranziții* sau a unei *mulțimi de poziții*, notată generic {*}. Evident, mulțimile predecesor și succesor ale unei mulțimi de tranziții sunt două mulțimi de poziții, iar mulțimile predecesor și succesor ale unei mulțimi de poziții sunt două mulțimi de tranziții.

BT2.3. Validarea și executarea tranzițiilor în rețele cu capacitate infinită – evoluția stărilor

Marcajul unei rețele Petri are semnificația de *stare a rețelei* și se poate modifica în conformitate cu următorul procedeu denumit *regula tranziției* (validare și executare) (ilustrare în **AP2.1**).

- a) Se spune că o tranziție *t* este *validată* (eng. *enabled*) dacă fiecare poziție de intrare (predecesor) p a lui t este marcată cu cel puțin W(p,t) jetoane, unde W(p,t) notează ponderea arcului de la p la t.
- b) O tranziție validată poate sau nu să fie *executată* sau *declanșată* (eng. *fired*), după cum evenimentul asociat tranziției are sau nu loc.
- c) Executarea unei tranziții validate îndepărtează W(p,t) jetoane din fiecare poziție de intrare (predecesor) p a lui t și adaugă W(t,p) jetoane la fiecare poziție de ieșire (succesor) p a lui t, unde W(t,p) este ponderea arcului de la t la p.

O tranziție fără nici o poziție de intrare se numește *tranziție sursă* (eng. *source*). O tranziție fără nici o poziție de ieșire se numește *tranziție receptor* (eng. *sink*). Modul de operare al acestor tranziții este următorul:

- a) O tranziție sursă este necondiționat validată (fără a fi obligatoriu ca să se execute). Executarea ei produce jetoane.
- b) Executarea unei tranziții receptor consumă jetoane, fără a produce jetoane.

În teoria rețelelor Petri netemporizate se consideră că *executarea unei tranziții nu consumă timp* și că *jetoanele pot rămâne în poziții pentru orice durată de timp* (oricât de mică sau oricât de mare). Întrucât executarea unei tranziții este instantanee, se consideră că tranzițiile se execută *numai secvențial*, adică nu se poate vorbi de două tranziții executate

simultan (sau în paralel). Aceste presupuneri fac ca modelul de tip rețea Petri netemporizată să fie utilizat numai pentru investigarea proprietăților logice, calitative, care nu depind de timp.

Pentru o rețea Petri N cu un marcaj inițial M_0 , urmărind executarea secvențială a tranzițiilor, se pot determina marcajele succesive ale rețelei. Procesul de modificare a marcajului (stării) rețelei poate fi descris într-o manieră sintetică printr-un arbore sau printr-un graf (diferit de graful rețelei Petri!), ce poartă denumirea de *arbore*, respectiv, *graf de accesibilitate* (eng. *reachability tree/graph*) (ilustrare în **AP2.4**). Aceste concepte sunt detaliate în BT3.3 din capitolul 3, cu referire la situația mai generală a *arborelui/grafului de acoperire* (eng. *coverability tree/graph*).

BT2.4. Unele extensii pentru rețele Petri netemporizate

BT2.4.1. Rețele Petri cu capacitate finită

Pentru regula de validare a unei tranziții prezentată anterior s-a presupus că fiecare poziție are *capacitate infinită*. În modelarea sistemelor fizice este firesc a considera o limită superioară a numărului de jetoane pe care îl poate conține fiecare poziție, asociind fiecărei poziții p *capacitatea* sa (eng. *capacity*), notată K(p), definită ca numărul maxim de jetoane ce pot fi conținute în p. O astfel de rețea se numește cu *capacitate finită*.

Într-o rețea cu capacitate finită, pentru *validarea* unei tranziții t este necesară următoarea *condiție suplimentară*: numărul de jetoane în fiecare poziție de ieșire p a lui t nu poate să depășească capacitatea poziției respective, K(p), atunci când t s-ar executa (ilustrare în **AP2.1**). În acest caz, regula tranziției se va numi *regula strictă a tranziției* spre a o deosebi de cea enunțată în paragraful BT2.3, care mai este uneori referită drept *regula simplă a tranziției*.

Fiind dată o rețea Petri de capacitate finită (N, M_0) este posibil de aplicat fie regula strictă a tranziției direct pentru rețeaua (N, M_0) , fie regula simplă a tranziției pentru o *rețea* transformată adecvat, notată (N', M'_0) . Presupunând că rețeaua N este pură, următorul algoritm permite construcția rețelei (N', M'_0) plecând de la (N, M_0) , prin metoda pozițiilor complementare:

- *Pas* 1. Pentru *fiecare* poziție *p*, se adaugă o poziție complementară *p'*, al cărei marcaj inițial este dat de $M'_0(p) = K(p) M_0(p)$.
- *Pas* 2. Între *fiecare* tranziție *t* și *unele poziții complementare p'* se trasează arce suplimentare, (*t*,*p'*) sau (*p'*,*t*), cu ponderile W(t, p') = W(p,t), respectiv W(p',t) = W(t,p), astfel încât suma jetoanelor în poziția *p* și în poziția complementară corespunzătoare *p'* să fie egală cu capacitatea K(p), atât înainte, cât și după executarea tranziției *t* (adică să se asigure satisfacerea condiției M(p) + M'(p') = K(p)).

Subliniem faptul că *metoda nu adaugă* tranziții suplimentare (ilustrare în AP2.2). Grafurile de accesibilitate ale rețelelor (N, M_0) și (N', M'_0) sunt *izomorfe* în sensul că prezintă aceleași secvențe posibile de executare a tranzițiilor.

BT2.4.2. Rețele cu probabilități și priorități

În unele modele de tip rețea Petri două sau mai multe tranziții modelează evenimente dintre care unul și numai unul se poate produce la un moment dat (în *conflict*). Implicit se consideră

că probabilitățile de apariție a acestor evenimente sunt egale. În cazul în care această presupunere nu este în conformitate cu sistemul fizic modelat, probabilitățile de apariție a evenimentelor în conflict pot fi asignate în mod explicit ca probabilități de executare a tranzițiilor care modelează evenimentele respective (ilustrare în **AP2.5**).

De asemenea, atunci când se dorește a impune modul de alegere a tranziției care urmează a fi executată dintre două sau mai multe tranziții validate simultan se poate utiliza o *rețea Petri cu priorități* care constă dintr-o rețea Petri obișnuită și o relație de ordine parțială între tranzițiile rețelei (ilustrare în **AP2.3**).

BT2.4.3. Rețele cu arce inhibitoare

Introducerea arcelor *inhibitoare* extinde capacitatea de modelare a rețelelor Petri. Un arc inhibitor conectează o poziție la o tranziție și are rolul de a inversa logica de validare și executarea a acesteia. Tranziția respectivă este validată numai dacă numărul de jetoane din poziția de intrare a arcului inhibitor este strict mai mic decât ponderea arcului. Arcul inhibitor se reprezintă grafic printr-un segment ce conectează cele două noduri, având un mic cerc la capătul dinspre tranziția inhibată. Nu există arce inhibitoare care conectează o tranziție la o poziție (ilustrare în **AP2.3**).

BT2.5. Modelarea cu rețele Petri ordinare

BT2.5.1. Structuri tipice utilizate în modelare

Structurile tipice utilizate în modelarea sistemelor cu evenimente discrete prin intermediul rețelelor Petri sunt prezentate sintetic în fig. BT2.5.1.

Fig. BT2.5.1. Structuri tipice utilizate în modelarea cu rețele Petri
(a) Conflict, decizie sau alegere liberă; (b) Alegere liberă extinsă;
(c) Alegere asimetrică; (d) Paralelism sau concurență; (e) Confuzie simetrică;
(f) Confuzie asimetrică; (g) Sincronizare; (h) Post-condiție comună.

BT2.5.2. Capacitatea de modelare a unor subclase de rețele Petri ordinare

Rețelele Petri ordinare pot fi organizate în *subclase* definite pe baza unor considerente *topologice*. Apartenența unei rețele la o anumită subclasă este reflectată în *capacitatea de modelare*, în sensul că rețeaua nu va putea conține toate *structurile tipice* definite în secțiunea precedentă, ci numai o parte din acestea (în funcție de subclasa căreia îi aparține). Această partajare pe subclase va servi, în secțiunea BT3.5 din capitolul 3, la formularea unor *tehnici dedicate* analizei anumitor proprietăți comportamentale pentru aceste tipuri de rețele.

Maşina de stare (eng. *state machine*) este o rețea Petri ordinară în care fiecare tranziție *t* are o singură poziție de intrare și o singură poziție de ieșire. Formalizând, avem:

$$\forall t \in T: \quad |^{\bullet}t| = |t^{\bullet}| = 1, \tag{BT2.5.1}$$

unde |*| notează cardinalitatea (numărul de elemente al) mulțimii *.

Referindu-ne la structurile tipice ilustrate în fig. BT2.5.1, se constată că o mașină de stare *conține numai* alegeri libere și post-condiții comune (ilustrare în **AP2.5**).

Graful marcat (eng. *marked graph*) sau graful de evenimente (eng. *event graph*) este o rețea Petri ordinară în care fiecare poziție *p* are o singură tranziție de intrare și o singură tranziție de ieșire. Formalizând, avem

$$\forall p \in P: \quad |^{\bullet}p \models |p^{\bullet}| = 1. \tag{BT2.5.2}$$

În termenii structurilor tipice ilustrate în fig. BT2.5.1, se constată că un graf marcat *conține numai* concurențe și sincronizări (ilustrare în **AP2.4** și **AP2.5**).

Termenul de graf marcat sau graf de evenimente se datorează faptului că acest tip de rețea Petri poate fi reprezentată printr-un *graf orientat unipartit* (care posedă un singur tip de noduri!) în care *nodurile* corespund tranzițiilor (adică evenimentelor), *arcele* corespund pozițiilor, iar jetoanele se plasează *pe arce* (adică arcele sunt marcate) (ilustrare în AP2.4). Astfel regula tranziției se aplică nodurilor grafului orientat, o executare constând, în această reprezentare grafică, în îndepărtarea unui jeton de pe fiecare din arcele de intrare ale nodului în cauză și adăugarea unui jeton pe fiecare din arcele de ieșire.

Rețeaua cu alegeri libere (eng. *free choice net*) este o rețea Petri ordinară în care orice arc ce iese dintr-o poziție *p* este caracterizat prin una din următoarele două situații:

(*i*) este *singurul* arc care pleacă din *p*,

sau:

(*ii*) este *singurul* arc care intră într-o anumită tranziție (adică în acea tranziție nu mai intră nici un alt arc, în afara celui ce pleacă din *p*).

Avem următoarea formalizare:

$$\forall p \in P: |p^{\bullet}| \le 1 \text{ sau } (p^{\bullet}) = \{p\}.$$
(BT2.5.3)

Această descriere matematică este echivalentă cu implicația:

$$\forall p_1, p_2 \in P: \quad p_1^{\bullet} \cap p_2^{\bullet} \neq \emptyset \quad \Rightarrow \quad |p_1^{\bullet}| = |p_2^{\bullet}| = 1. \tag{BT2.5.4}$$

Condiția (BT2.5.4) trebuie privită ca o relaxare a condiției (BT2.5.2). Totodată, condiția (BT2.5.4) relaxează și condiția (BT2.5.1).

Examinând aceste particularități prin prisma structurilor tipice ilustrate în fig. BT2.5.1, se constată că o rețea cu alegeri libere *conține numai* alegeri libere, post-condiții comune, concurențe și sincronizări.

Rețeaua cu alegeri libere extinse (eng. *extended free-choice net*) este o rețea Petri ordinară în care este satisfăcută condiția:

$$\forall p_1, p_2 \in P: \quad p_1^{\bullet} \cap p_2^{\bullet} \neq \emptyset \Longrightarrow p_1^{\bullet} = p_2^{\bullet}. \tag{BT2.5.5}$$

Condiția (BT2.5.5) trebuie privită ca o relaxare a condiției (BT2.5.4).

În termenii structurilor tipice discutate, ilustrate în fig. BT2.5.1, se constată că o rețea cu alegeri libere extinse *conține numai* alegeri libere, alegeri libere extinse, post-condiții comune, concurențe și sincronizări.

Rețeaua cu alegeri asimetrice (eng. *asymmetric–choice net*), sau rețeaua *simplă*, este o rețea Petri în care este satisfăcută condiția:

$$\forall p_1, p_2 \in P: \quad p_1^{\bullet} \cap p_2^{\bullet} \neq \emptyset \Longrightarrow (p_1^{\bullet} \subseteq p_2^{\bullet} \text{ sau } p_1^{\bullet} \supseteq p_2^{\bullet}). \tag{BT2.5.6}$$

Condiția (BT2.5.6) trebuie privită ca o relaxare a condiției (BT2.5.5).

Referindu-ne la structurile tipice ilustrate în fig. BT2.5.1, se constată că o rețea cu alegeri asimetrice *conține numai* alegeri libere, alegeri libere extinse, alegeri asimetrice, post-condiții comune, concurențe, sincronizări și confuzii asimetrice (ilustrare în **AP3.5** și **AP3.6**).

Examinând definițiile subclaselor de rețele Petri ordinare formulate mai sus, se constată că între acestea există relațiile de incluziune reprezentate grafic în fig. BT2.5.2.

Fig. BT2.5.2. Relațiile de incluziune între subclasele de rețele Petri ordinare.

Tabelul BT2.5.1. sintetizează informațiile referitoare la capacitatea de modelare a diferitelor subclase de rețele Petri ordinare în raport cu structurile tipice ce au fost prezentate în secțiunea BT2.5.1.

Structură Clasă	Alegeri libere	Alegeri libere extinse	Alegeri asimetrice	Concu- rențe	Confuzii simetrice	Confuzii asimetrice	Sincro- nizări	Post- condiții comune
Mașină de stare	DA	_	_	_	_	_	_	DA
Graf marcat	_	_	_	DA	_	_	DA	_
Rețea cu alegeri libere	DA	l	_	DA	_	_	DA	DA
Rețea cu alegeri libere extinse	DA	DA	_	DA	_	_	DA	DA
Rețea cu alegeri asimetrice	DA	DA	DA	DA	_	DA	DA	DA
Rețea Petri ordinară	DA	DA	DA	DA	DA	DA	DA	DA

Tab. BT2.5.1. Prezentare sintetică a capacității de modelare a diferitelor subclase de rețele Petri.

Capacitatea de modelare crește în sensul acceptării de noi structuri tipice, această creștere fiind perfect compatibilă cu relațiile de incluziune stabilite între subclase în paragraful anterior (vezi și fig. BT2.5.2). Dar, după cum va reieși din secțiunea următoare, creșterea capacității de modelare face ca criteriile de analiză a proprietăților comportamentale să devină tot mai complexe și mai dificil de aplicat. Din acest motiv, insistăm asupra necesității elaborării unor modele cât mai puțin sofisticate, care să fie capabile să surprindă acele detalii de funcționare ce trebuie avute în vedere pe parcursul analizei sau proiectării.

Aplicații

AP2.1.

Pentru rețelele Petri cu topologia și marcajul inițial indicat în fig. AP2.1.1, să se precizeze care dintre tranziții sunt validate și marcajul ce rezultă după executarea fiecăreia din aceste tranziții în cazurile următoare:

- 1. rețelele au capacități infinite;
- 2. rețelele au capacități finite după cum urmează:
 - (i) pentru rețeaua din fig. AP2.1.1.(a): $K(p_1) = K(p_3) = 2$, $K(p_2) = 1$;
 - (ii) pentru rețeaua din fig. AP2.1.1.(b): $K(p_1) = K(p_2) = K(p_3) = 1$;
 - (iii) pentru rețeaua din fig. AP2.1.1.(c): $K(p_1) = 2$, $K(p_2) = 3$, $K(p_3) = K(p_4) = 1$.

Fig. AP2.1.1. Rețelele Petri studiate în AP2.1.

<u>Soluție</u>

1. Aplicând regula simplă a tranziției rețelei din fig. AP2.1.1.(a) cu marcajul inițial $M_0 = (2,1,0)$ se obține:

- tranziția t_1 este validată deoarece $M_0(p_1) > W(p_1, t_1)$; prin executarea lui t_1 se ajunge din M_0 la marcajul $M_1 = (1, 2, 0)$;
- tranziția t_2 este validată deoarece $M_0(p_2) = W(p_2, t_2)$; prin executarea lui t_2 se ajunge din M_0 la marcajul $M_2 = (3, 0, 0)$;
- tranziția t_3 este validată deoarece $M_0(p_1) > W(p_1, t_3)$ și $M_0(p_2) = W(p_2, t_3)$; prin executarea lui t_3 se ajunge din M_0 la marcajul $M_3 = (1, 0, 1)$.

Analog, pentru rețeaua din fig. AP2.1.1.(b) cu marcajul inițial $M_0 = (1,1,0)$ rezultă:

- tranziția t₁ este validată deoarece M₀(p₁) > W(p₁,t₁); prin executarea lui t₁ se ajunge din M₀ la marcajul M₁ = (1,2,0);
- tranziția t_2 este validată deoarece $M_0(p_2) = W(p_2, t_2)$; prin executarea lui t_2 se ajunge din M_0 la marcajul $M_2 = (3, 0, 0)$;
- tranziția t_3 este validată deoarece $M_0(p_1) > W(p_1, t_3)$ și $M_0(p_2) = W(p_2, t_3)$; prin executarea lui t_3 se ajunge din M_0 la marcajul $M_3 = (1, 0, 1)$.

Pentru rețeaua din fig. AP2.1.1.(c) cu marcajul inițial $M_0 = (2,0,0,1)$, aplicarea regulii simple a tranziției conduce la:

- tranziția t_1 este validată deoarece $M_0(p_1) > W(p_1, t_1)$; prin executarea lui t_1 se ajunge din M_0 la marcajul $M_1 = (0, 3, 0, 2)$;
- tranziția t_5 este validată deoarece $M_0(p_4) = W(p_4, t_5)$; prin executarea lui t_2 se ajunge din M_0 la marcajul $M_2 = (4, 0, 0, 0)$.

15

2. Ținând cont de marcajele la care s-ar ajunge prin executarea tranzițiilor validate determinate la punctul 1 și de capacitățile finite precizate ale pozițiilor, prin aplicarea regulii stricte a tranziției se obține:

- (i) pentru rețeaua din fig. AP2.1.1.(a), singura tranziție validată este t_3 deoarece $M_0(p_1) > W(p_1,t_3)$, $M_0(p_2) = W(p_2,t_3)$ și $K(p_3) > M_0(p_3) + W(t_3,p_3)$; prin executarea lui t_3 se ajunge din M_0 la marcajul $M_3 = (1,0,1)$;
- (ii) pentru rețeaua din fig. AP2.1.1.(b) sunt validate:
 - tranziția t_2 deoarece $M_0(p_2) = W(p_2, t_2)$; prin executarea lui t_2 se ajunge din M_0 la marcajul $M_2 = (3, 0, 0)$;
 - tranziția t_3 deoarece $M_0(p_1) > W(p_1, t_3)$, $M_0(p_2) = W(p_2, t_3)$ și $K(p_3) = M_0(p_3) + W(t_3, p_3)$; prin executarea lui t_3 se ajunge din M_0 la marcajul $M_3 = (1, 0, 1)$;

(iii) pentru rețeaua din fig. AP2.1.1.(c) nici una dintre tranziții nu este validată.

AP2.2.

Transformați rețeaua Petri cu capacitate finită din fig. AP2.2.1, într-o rețea Petri cu capacitate infinită.

Fig. AP2.2.1. Rețeaua Petri cu capacitate finită studiată în AP2.2.

<u>Soluție</u>

Utilizând metoda pozițiilor complementare cu referire la poziția p_3 , se adaugă poziția p'_3 astfel încât să fie satisfăcute următoarele relații:

$$W(t_3, p_3) = W(p'_3, t_3) = 1,$$

$$W(t_3, p'_3) = W(p_3, t_3) = 1,$$

$$M_0(p'_3) = K(p_3) - M_0(p_3) = 1 - 1 = 0.$$

Rețeaua Petri cu capacitate finită din fig. AP2.2.1 este echivalentă cu rețeaua Petri de capacitate infinită prezentată în fig. AP2.2.2.

Fig. AP2.2.2. Rețeaua Petri cu capacitate infinită corespunzătoare celei din fig. AP2.2.1.

AP2.3.

Se consideră rețeaua Petri din fig. AP2.3.1 care modelează un sistem cu un producător (subrețeaua din partea stângă) și un consumator (subrețeaua din partea dreaptă).

- 1. Să se explice modul de operare al rețelei.
- 2. Se consideră și un al doilea consumator, care este autorizat să consume numai atunci când primul consumator nu solicită produs. Să se construiască modelul tip rețea Petri al sistemului cu doi consumatori.

Fig. AP2.3.1. Modelul de tip rețea Petri al unui sistem cu un producător și un consumator.

<u>Soluție</u>

1. În poziția p_3 se acumulează un număr de jetoane semnificând produsele furnizate de către producător. Pe măsură ce consumatorul are nevoie de aceste produse, se va executa tranziția t_3 , câte o dată pentru fiecare produs preluat de către consumator.

2. Prezența celui de-al doilea consumator se modelează printr-o subrețea identică cu cea utilizată pentru primul consumator. În cazul conectării celor două subrețele de tip consumator

ca în fig. AP2.3.2.(a), în lipsa altor precizări, cei doi consumatori vor avea drepturi egale de a consuma, ceea ce înseamnă că modelul nu răspunde în totalitate cerințelor din enunț. Pentru a include în model și informațiile referitoare la disciplina de consum, se va asigna prioritate 0 tranziției t_3 și, respectiv, prioritate 1 tranziției t_5 .

O variantă echivalentă cu alocarea priorităților o constituie controlul tranziției t_5 printr-un arc inhibitor conform figurii AP2.3.2.(b); astfel, dacă p_3 conține jeton/jetoane, t_5 va fi validată numai când p_5 nu conține jeton (adică primul consumator nu solicită produs).

Fig. AP2.3.2. Modelul de tip rețea Petri al sistemului cu un producător și doi consumatori:
(a) asignând tranziției t₃ prioritate mai mare decât tranziției t₅;
(b) utilizând arc inhibitor pe tranziția t₅.

AP2.4.

Se consideră un protocol de comunicații, adaptat după (Desrochers and Al-Jaar, 1993), reprezentat prin modelul din fig. AP2.4.1. Semnificațiile pozițiilor și tranzițiilor sunt prezentate în tabelele AP2.4.1, respectiv AP2.4.2.

- 1. Să se precizeze succesiunea de executări de tranziții care, plecând din marcajul inițial din fig. AP2.4.1, asigură revenirea la acest marcaj.
- 2. Să se specifice succesiunea de evenimente corespunzătoare transmiterii complete a unui mesaj.
- 3. Să se precizeze clasa de rețele Petri căreia îi aparține acest model.

Cap. 2. Modele de tip rețea Petri netemporizată

Fig. AP2.4.1. Modelul de tip rețea Petri al unui protocol de comunicații.

1 ab. AF 2.4.1. Semnificațiile pozițiilor ain modelui prezeniai în fig. AI 2.4	1 <i>P2.4</i> .	fig.	l prezentat în j	modelul	țiilor din	țiile pozi	Semnifica	AP2.4.1.	Tab.
--	-----------------	------	------------------	---------	------------	------------	-----------	----------	------

Poziție	Condiție
p_1	Emițătorul (E) pregătește mesajul.
p_2	Buffer-ul de comunicație (B) conține mesajul.
<i>p</i> ₃	Receptorul (R) este pregătit pentru recepție.
p_4	(E) așteaptă semnalul de confirmare (<i>acknowledge</i> – ACK).
<i>p</i> ₅	(R) primește mesajul.
p_6	(E) primește semnalul de confirmare (ACK).
p_7	(B) conține semnalul de confirmare (ACK).
p_8	(R) procesează mesajul primit.

Tab. AP2.4.2. Semnificațiile tranzițiilor din modelul prezentat în fig. AP2.4.1.

Tranziție	Eveniment
t_1	(E) începe transmisia mesajului.
t_2	(R) începe primirea mesajului
t ₃	(E) termină de primit semnalul de confirmare (ACK) și începe pregătirea unui nou mesaj.
t_4	(R) termină primirea mesajului și începe transmisia semnalului de confirmare (ACK) și procesarea mesajului.
<i>t</i> ₅	(R) termină procesarea și începe pregătirea pentru recepționarea unui nou mesaj.
t_6	(E) începe primirea semnalului de confirmare (ACK).

- 19

<u>Soluție</u>

1. Arborele de accesibilitate furnizat de *Petri Net Toolbox* în mod grafic și semnificația marcajelor sunt prezentate în fig. AP2.4.2. Se poate observa că, plecând din marcajul inițial M_0 , succesiunea de executări de tranziții $\sigma = t_1 t_2 t_4 t_5 t_6 t_3$ asigură revenirea la acesta.

Fig. AP2.4.2. Arborele de accesibilitate pentru rețeaua Petri din fig. AP2.4.1.

2. Pe baza semnificației fizice a tranzițiilor din modelul studiat, succesiunii de tranziții σ determinată la punctul precedent îi corespunde următoarea succesiune de evenimente care au loc la transmiterea completă a unui mesaj:

- > (E) începe transmisia mesajului (t_1) .
- > (E) începe primirea semnalului de confirmare (ACK) (t_2) .
- > (R) începe primirea mesajului (t_4).
- (R) termină primirea mesajului și începe transmisia semnalului ACK și procesarea semnalului (t₅).
- > (R) termină procesarea și începe pregătirea pentru recepționarea unui nou mesaj (t_6).
- \succ (E) termină de primit semnalul ACK și începe pregătirea unui nou mesaj (t_3).

<u>Observație</u>: Se poate observa că, în afară de secvența σ precizată anterior, mai există încă două secvențe de executări de tranziții care, plecând din marcajul inițial, asigură revenirea la acesta, și anume $\sigma' = t_1 t_2 t_4 t_6 t_5 t_3$ și $\sigma'' = t_1 t_2 t_4 t_6 t_3 t_5$. Deoarece duratele operațiilor care au loc în sistemul fizic nu sunt implicate în modelul logic reprezentat de rețeaua Petri netemporizată, nu se poate preciza ordinea în care se vor executa tranzițiile t_5 și t_6 . (Pentru interpretarea în context temporizat, vezi **AP6.2**.)
3. Rețeaua Petri prezentată în fig. AP2.4.1 face parte din clasa grafurilor marcate Datorită tipului particular de rețea, drept reprezentare grafică se poate utiliza un graf unipartit, conform fig. AP2.4.3.

Fig. AP2.4.3. Modelul de tip graf marcat al protocolului de comunicații reprezentat sub formă de graf orientat unipartit.

AP2.5.

Se consideră rețeaua Petri având topologia din fig. AP2.5.1. Pozițiile au capacitățile $K(p_1) = 1$ și $K(p_2) = 1$.

Fig. AP2.5.1. Topologia rețelei Petri utilizată în AP2.5.

- 1. Pentru marcajul inițial $M_0(p_1) = 1$ și $M_0(p_2) = 0$, să se execute simularea în varianta *Step* pentru 4 evenimente înregistrând rezultatele simulării într-un fișier de tip jurnal. Se va citi jurnalul și se va preciza *secvența de executări de tranziții* care are loc pe parcusul simulării precum și *marcajele* prin care trece rețeaua.
- 2. Să se reia punctul 1, schimbând marcajul inițial în $M'_0(p_1) = 0$ și $M'_0(p_2) = 1$, fără a modifica topologia rețelei.
- 3. Să se precizeze clasa de rețele Petri căreia îi aparține acest model.
- 4. Să se justifice faptul că rețeaua Petri din fig. AP2.5.1 modelează un server cu două stări I (*iddle*) și W (*working*).

- 5. Să se precizeze cum trebuie modificată rețeaua astfel încât să poată modela un server cu posibilități de defectare, situație în care va mai exista o stare D (*down*). Se presupune că serverul nu se poate defecta decât în timpul lucrului. Se vor avea în vedere următoarele două situații:
 - (i) Servirea clientului aflat în lucru în momentul defectării poate fi reluată după remediere.
 - (ii) Servirea clientului aflat în lucru în momentul defectării nu mai poate fi reluată, trecându-se la servirea unui nou client.
- 6. Să se simuleze în varianta *Run Fast* modelele de la punctul 5, pentru un număr total de 10.000 de evenimente, în următoarele situații:
 - (i) Probabilitatea defectării serverului este egală cu a funcționării corecte;
 - (ii) Probabilitatea defectării serverului (10%) este mult mai mică decât cea a funcționării corecte (90%);
 - (iii) Probabilitatea defectării serverului (90%) este mult mai mare decât cea a funcționării corecte (10%).

Să se precizeze prin ce diferă modelele de simulare de la subpunctele (i), (ii) și (iii) ale punctului 6. Pentru fiecare caz în parte să se precizeze următorii indicatori de performanță ai serverului: numărul total de clienți sosiți la server care au început să fie serviți, numărul total de clienți serviți complet și numărul total de defectări ale serverului. Corelați aceste rezultate cu parametrii modelului folosit pentru simulare.

<u>Soluție</u>

1. În urma efectuării unui experiment de simulare în modurile *Step* și *Run Slow* a funcționării unei rețele Petri, mediul *Petri Net Toolbox* oferă posibilitatea de a înregistra, într-un fișier de tip jurnal, secvența de tranziții care a fost executată pe parcursul simulării și succesiunea de marcaje prin care a trecut rețeaua.

Utilizând această facilitate pentru simularea apariției unui număr de 4 evenimente în rețeaua Petri din fig. AP2.5.1 cu marcajul inițial $M_0 = (1 \ 0)$, se înregistrează rezultatele prezentate în fig. AP2.5.2.(a). Se observă că secvența de executări de tranziții care are loc este $\sigma = t_2, t_1, t_2, t_1$. Există numai două marcaje distincte prin care trece rețeaua (succesiv), anume $M_0 = (1 \ 0)$ și $M_1 = (0 \ 1)$.

2. Păstrând topologia rețelei dar schimbând marcajul inițial în $M'_0 = (0 \ 1)$, în urma simulării cu ajutorul mediului *Petri Net Toolbox* a apariției unui număr de 4 evenimente se obțin rezultatele prezentate în fig. AP2.5.2(b). În acest caz, secvența de executări de tranziții care are loc este: $\sigma' = t_1, t_2, t_1, t_2$. Se observă că și în acest caz există numai două marcaje distincte prin care trece rețeaua, anume $M'_0 = (0 \ 1)$ și $M'_1 = (1 \ 0)$.

3. Rețeaua Petri ordinară cu topologia din fig. AP2.5.1 este atât *graf marcat*, pentru că fiecare poziție are o singură tranziție de intrare și o singură tranziție de ieșire, cât și *mașină de stare*, pentru că fiecare tranziție are o singură poziție de intrare și o singură poziție de ieșire.

Sin Sin	t Toolbox - We PNTool nulation ap2pr5.xml	b Browser Ibox - n Histo	R	Setri Ne Sin	t Toolbox - We PNTool nulation ap2pr5.xml	b Browser box - 1 Histo		
Event	Transition	Marking	Time		Event	Transition	Marking	Tim
	t2 on	[1 0]	0		1	t1 on	[0 1]	0
	t2 off	[0 1]	0		1	t1 off	[1 0]	0
	t1 on	[0 1]	0		2	t2 on	[1 0]	0
	t1 off	[1 0]	0		2	t2 off	[0 1]	0
	t2 on	[1 0]	0		3	t1 on	[0 1]	0
	t2 off	[0 1]	0		3	t1 off	[1 0]	0
	t1 on	[0 1]	0		4	t2 on	[1 0]	0
	t1 off	[1 0]	0		4	t2 off	[0 1]	0
	(a					(b)		

Fig. AP2.5.2. Jurnalul furnizat de Petri Net Toolbox după simularea apariției unui număr de 4 evenimente în rețeaua Petri din fig. AP2.5.1: (a) cu marcajul inițial $M_0 = (1 \ 0)$; (b) cu marcajul inițial $M'_0 = (0 \ 1)$.

4. După cum am văzut la punctele 1 și 2, la apariția unui eveniment (executarea unei tranziții) rețeaua Petri își schimbă marcajul (starea). În ambele situații considerate există numai două marcaje distincte, (1, 0) și (0, 1), în care rețeaua evoluează succesiv, ca urmare a executării uneia dintre cele două tranziții. Distincția dintre cele două marcaje este dată de prezența jetonului din marcajul inițial în una dintre pozițiile rețelei. Din aceste motive, rețeaua Petri din fig. AP2.5.1 modelează un sistem fizic cu două stări (corespunzătoare celor două marcaje). Un asemenea sistem ar putea reprezenta, de exemplu, un server cu două stări și anume starea în care așteaptă sosirea unui client (*iddle* – I) – corespunzătoare marcajului (1, 0) – și cea în care servește un client (*working* – W) – corespunzătoare marcajului (0, 1).

Fig. AP2.5.3. Topologiile rețelelor Petri în cazul unui server cu trei stări.

5. Pentru a modifica rețeaua Petri din fig. AP2.5.1 astfel încât să poată modela un server cu posibilități de defectare, este necesară introducerea unei poziții suplimentare care va fi asociată stării în care serverul este defect (down - D). Rețelele Petri corespunzătoare celor două situații (i)

și (ii) sunt prezentate în fig. AP2.5.3, ambele având topologii de mașină de stare. Semnificațiile fizice ale pozițiilor și tranzițiilor sunt prezentate în tab. AP2.5.1, respectiv AP2.5.2.

Poziție	Stare
Ι	(S) este disponibil (așteaptă un client).
W	(S) servește un client.
D	(S) este defect.

Tab. AP2.5.1. Semnificațiile pozițiilor din modelul prezentat în fig. AP2.4.1.

Tranziție	Eveniment
t_1	Serverul (S) a terminat de servit un client.
t_2	(S) începe servirea unui nou client.
t_3	Apare un defect la (S).
t_4	Se termină remedierea serverului.

6. În mediul *Petri Net Toolbox*, pentru ambele rețele prezentate în fig. AP2.5.3, probabilităților de executare a tranzițiilor t_3 și t_4 li se pot asigna valorile corespunzătoare probabilităților de apariție a evenimentelor pe care le modelează (apariția unui defect și, respectiv, terminarea remedierii serverului). În urma efectuării unui experiment de simulare, indicatorul *Service Sum* asociat tranzițiilor t_2 , t_1 și t_3 corespunde numărului de clienți sosiți la server, numărului de clienți serviți complet și, respectiv, numărului de defectări ale serverului. Tab. AP2.5.3 prezintă sintetic valorile obținute în urma simulării apariției a 10.000 de evenimente pentru cele două rețele prezentate în fig. AP2.5.3 în fiecare dintre cele trei situații.

Situație modelată	Cu re clientu	eluarea se 1lui (AP2	rvirii .5.3.a)	Fără reluarea servirii clientului (AP2.5.3.b)					
Indicator statistic	(i)	(ii)	(iii)	(i)	(ii)	(iii)			
Numărul de clienți sosiți la server	2507	4527	484	3985	4765	3441			
Numărul de clienți serviți complet	2507	4527	483	1955	4295	321			
Numărul de defectări ale serverului	2493	473	4517	2030	470	3119			

Tab. AP2.5.3. Indicatori obținuți în urma simulării apariției a 10.000 de evenimenteîn situațiile considerate la punctul 6 al aplicației AP2.5

Din tabelul de mai sus se poate observa că, pentru același număr de evenimente, raportul dintre numărul de clienți serviți complet (numărul de executări ale tranziției t_1) și numărul de defectări ale serverului (numărul de executări ale tranziției t_3) este aproximativ egal cu raportul dintre probabilitatea de funcționare corectă și cea de defectare a serverului (asignate tranziției t_1 și, respectiv, tranziției t_3).

AP2.6.

Un sistem de fabricație este alcătuit din două mașini M_1 , M_2 și un braț de robot R. Orice piesă brută este prelucrată mai întâi pe M_1 și apoi pe M_2 . Robotul R mută o piesă care a fost prelucrată pe M_1 , de pe mașina M_1 pe mașina M_2 . Nu există depozite care să preceadă M_1 sau M_2 . Încărcarea unei piese pe mașina M_1 și descărcarea unei piese de pe mașina M_2 se desfășoară automat. Pentru transportul unei piese, aceasta se fixează pe o paletă înainte de încărcarea pe M_1 și se desprinde de pe paletă după descărcarea de pe M_2 . Paleta eliberată la descărcarea unei piese de pe M_2 este recirculată automat pentru a se fixa pe ea o nouă piesă. În fig. AP2.6.1 se prezintă schematizat procesul de prelucrare al pieselor în sistemul de fabricație.

Recirculare palete libere

Fig. AP2.6.1. Reprezentarea schematizată a sistemului de fabricație din AP2.6.

Se presupune că există un număr suficient de mare de piese brute și că M_1 , M_2 și R funcționează fără defectare.

- 1. Să se elaboreze un model tip rețea Petri pentru a studia comportarea de tip logic a sistemului de fabricație, atunci când se folosesc *x* palete pentru transport.
- Să se simuleze, în varianta *Step*, funcționarea sistemului de fabricație cu o singură paletă (x = 1) pentru un număr de 5 evenimente. Să se descrie succesiunea de stări prin care trece sistemul.
- 3. Se reia punctul 2 pentru x = 4.
- 4. Există un optim pentru x? Justificați.
- 5. Să se precizeze clasa de rețele Petri căreia îi aparține acest model.
- 6. Să se justifice faptul că orice piesă brută intrată în sistem ajunge să fie complet prelucrată.

<u>Soluție</u>

1. Modelul de tip rețea Petri al sistemului de fabricație este prezentat în fig. AP2.6.2. Numărul de jetoane din poziția p_1 în marcajul inițial este egal cu x, numărul de palete din sistemul de fabricație.

2. Succesiunea de stări prin care trece sistemul se poate obține utilizând opțiunea *Log File*. Pentru un număr de 5 evenimente se obțin rezultatele prezentate în fig. AP2.6.3.(a).

3. Analog ca la punctul anterior utilizăm opțiunea *Log File* a mediului *Petri Net Toolbox* și obținem succesiunea stărilor prin care trece sistemul, prezentată în fig. AP2.6.3.(b).

25

26 -

Fig. AP2.6.2. Modelul de tip rețea Petri al sistemului de fabricație din fig. AP2.6.1.

4. În sistemul de fabricație nu se pot găsi în același moment mai mult de 3 piese, ceea ce înseamnă că numărul optim de palete este egal cu 3. Dacă s-ar folosi x > 3 palete, atunci la orice moment de timp x-3 palete ar fi neutilizate.

5. Rețeaua Petri din fig. AP2.6.2 este graf marcat deoarece ponderile tuturor arcelor sunt egale cu 1 și fiecare poziție are o singură tranziție de intrare și o singură tranziție de ieșire.

6. Sistemul de fabricație din fig. AP2.6.1. nu conține resurse partajate. Pentru fiecare operație există întotdeauna o secvență de executări de tranziții care asigură eliberarea resursei necesare pentru efectuarea următoarei operații. În consecință nu se pot produce blocaje circulare de resurse, orice piesă brută intrată în sistem ajungând să fie complet prelucrată.

<mark>Petri Ne PNT (</mark> Model:ca	et Toolbox - We DOIbox His ap2pr6.xml	-b Browser - Simulat tory	ion	Petri Net Toolbox - Web Browser									
Event	Transition	Marking	Time	Event	Transition	Marking	Time						
1	t1 on	[1000111]	0	1	t1 on	[4000111]	0						
1	t1 off	[0 1 0 0 0 1 1]	0	1	t1 off	[3100011]	0						
2	t2 on	[0 1 0 0 0 1 1]	0	2	t2 on	[3100011]	0						
2	t2 off	[0 0 1 0 1 0 1]	0	2	t2 off	[3010101]	0						
3	t3 on	[0 0 1 0 1 0 1]	0	3	t1 on	[3010101]	0						
3	t3 off	[0 0 0 1 1 1 0]	0	3	t1 off	[2110001]	0						
4	t4 on	[0 0 0 1 1 1 0]	0	4	t3 on	[2110001]	0						
4	t4 off	[1000111]	0	4	t3 off	[2101010]	0						
5	t1 on	[1000111]	0	5	t4 on	[2101010]	0						
5	t1 off	[0 1 0 0 0 1 1]	0	5	t4 off	[3100011]	0						
-	(a)		1			(b)							

Fig. AP2.6.3. Succesiunea de stări prin care trece rețeaua Petri din fig. AP.2.6.2. în cazul utilizării (a) unei singure palete și (b) a unui număr de 4 palete.

Studierea proprietăților comportamentale

Breviar teoretic

BT3.1. Definirea proprietăților comportamentale

Proprietățile comportamentale (eng. *behavioral*) ale rețelelor Petri netemporizate sunt dependente atât de topologia cât și de marcajul inițial al rețelei. În ceea ce privește terminologia, este absolut necesar a face distincție față de proprietățile structurale (discutate în capitolul 5), care iau în considerare numai topologia rețelei, fiind independente de marcajul inițial al acesteia.

BT3.1.1. Accesibilitate

O secvență de executări de tranziții ale unei rețele Petri conduce la modificarea marcajului (a distribuției de jetoane), în conformitate cu aplicarea regulii tranziției. Despre un marcaj M_n se spune că este *accesibil* (eng. *reachable*) din marcajul inițial M_0 dacă există o secvență de executări de tranziții care transformă M_0 în M_n . Această secvență de executări (de tranziții) *se notează* prin: $\sigma = M_0 t_{i_1} M_1 t_{i_2} M_2 ... t_{i_k} M_k$, sau, simplu, prin: $\sigma = t_{i_1} t_{i_2} ... t_{i_k}$, când nu interesează succesiunea de marcaje. Faptul că marcajul M_n este accesibil din M_0 prin secvența de executări σ se notează $M_0[\sigma > M_n]$.

Mulțimea tuturor marcajelor care pot fi atinse în rețeaua N pornind din marcajul inițial M_0 se notează prin $R(N, M_0)$, sau, simplu, prin $R(M_0)$, atunci când se subînțelege rețeaua N la care ne referim. Mulțimea tuturor secvențelor de executare posibile în rețeaua N pornind din marcajul inițial M_0 se notează prin $L(N, M_0)$ sau, simplu, prin $L(M_0)$ atunci când se subînțelege rețeaua N la care ne referim.

BT3.1.2. Mărginire

Se spune că o rețea Petri cu capacitate nelimitată este *k-mărginită*, sau, în limbaj prescurtat, *mărginită* (eng. *bounded*), dacă numărul de jetoane din fiecare poziție nu depășește un număr finit *k* pentru **orice** marcaj accesibil din marcajul inițial M_0 (adică pentru orice secvență de executări de tranziții pornind de la M_0). În limbaj matematic, aceasta revine la $M(p) \le k$ pentru orice $p \in P$ și orice $M \in R(M_0)$. Se spune că o rețea Petri (N, M_0) este *sigură* (eng. *safe*) dacă ea este 1-mărginită (ilustrare în **AP3.4**).

Din punct de vedere practic, când rețeaua modelează un proces, proprietatea de mărginire permite a studia eventualele depășiri ale unor capacități fizice de procesare / memorare a informației sau de prelucrare / stocare a produselor. Mărginirea asigură nedepășirea anumitor valori, indiferent de secvența de evenimente (adică tranziții executate).

BT3.1.3. Viabilitate

O rețea Petri (N, M_0) se numește *viabilă* (eng. *live*) dacă, indiferent de marcajul care a fost atins pornind din M_0 , este posibil ca, în continuare, să fie executată **orice** tranziție t a rețelei. Până la executarea lui t poate fi necesară, eventual, executarea unui număr *finit* de alte tranziții (ilustrare în AP3.1, AP3.3, AP3.4, AP3.5 și AP3.6).

Un marcaj pentru care nici o tranziție a rețelei nu mai poate fi executată se numește *deadlock* (ilustrare în **AP3.2**, **AP3.5** și **AP3.6**). În baza definiției viabilității se constată că o rețea viabilă operează fără deadlock. Pe de altă parte, o rețea care nu este viabilă, nu evoluează în mod obligatoriu către deadlock, în sensul că, pe lângă tranziția sau tranzițiile care nu mai pot fi executate, una sau mai multe tranziții sunt executabile de o infinitate de ori (ilustrare în **AP3.3** și **AP4.3**). Într-un atare caz se poate vorbi despre un deadlock parțial. Nuanțări în această direcție pot fi găsite în (Murata, 1989) și (Păstrăvanu, 1996).

Din punct de vedere practic, când rețeaua modelează un proces, proprietatea de viabilitate permite a studia funcționarea fără incidente nereparabile (de factură logică, adică nu defecte), care să necesite o intervenție externă procesului.

BT3.1.4. Reversibilitate

O rețea Petri ($N M_0$) se spune că este *reversibilă* (eng. *reversible*), dacă pentru orice marcaj $M \in R(M_0)$, marcajul inițial M_0 este, la rândul său, accesibil când se pornește din M. Astfel, într-o rețea reversibilă este întotdeauna posibilă întoarcerea la marcajul inițial (ilustrare în **AP3.1**, **AP3.4**, **AP3.5** și **AP3.6**).

Din punct de vedere practic, când rețeaua modelează un proces, proprietatea de reversibilitate permite a studia repetabilitatea desfășurării anumitor activități sau a apariției anumitor condiții.

Observație: Mărginirea, viabilitatea și reversibilitatea sunt proprietăți independente una de cealaltă.

BT3.2. Producerea fenomenului de deadlock în sistemele cu resurse partajate

Exploatarea *partajată* a resurselor constituie o soluție frecvent folosită în sistemele tehnice din diferite domenii, dintre care semnalăm drept reprezentative procesele de fabricație din celulele flexibile și sistemele de operare multitasking. Prin utilizare partajată, o resursă (în general costisitoare) este întrebuințată pentru efectuarea mai multor operații, dând posibilitatea ca resursa respectivă să fie alocată tuturor acestor operații (evident, nu simultan).

Un fenomen tipic ce poate apărea în funcționarea sistemelor cu resurse partajate este *deadlock-*ul sau *blocarea circulară* a resurselor (ilustrare în **AP3.5** și **AP3.6**).

Deadlock-ul se produce prin alocarea necorespunzătoare a uneia sau mai multor resurse partajate, fapt ce conduce la un lanț circular de resurse ocupate (nu toate partajate, dar cel puțin una partajată), fiecare dintre aceste resurse așteptând eliberarea resursei pe care o precede în lanț. Procesul de așteptare fiind circular, nici o resursă nu se poate elibera și ieșirea dintr-o atare situație se poate realiza numai printr-o intervenție externă sistemului. Atragem atenția că *fenomenul de deadlock nu poate să apară în sistemele fără resurse partajate*.

Modelele tip rețea Petri netemporizată constituie un instrument foarte eficient pentru a studia cauzele și mecanismul de producere a fenomenului de deadlock într-un context *pur logic*, fără *semnificații temporale*. Cu alte cuvinte, într-un sistem tehnic a cărui funcționare presupune anumite durate de timp pentru operații, deadlock-ul poate să apară pentru unele durate și poate să nu apară pentru altele. Astfel, modelul logic ne avertizează de posibila apariție a fenomenului de deadlock, chiar dacă acesta nu se manifestă în funcționarea fizică a sistemului datorită duratelor de timp (adică, modelul netemporizat ne avertizează că modificarea accidentală a duratelor de timp poate conduce la blocarea circulară a resurselor) (ilustrare în **AP6.7**).

BT3.3.Arbori și grafuri de acoperire/accesibilitate

BT3.3.1. Arbori de acoperire/accesibilitate

Fiind dată o rețea Petri (N, M_0), pornind de la marcajul inițial M_0 , modificarea marcajelor ca urmare a executării tranzițiilor poate fi reprezentată sub forma unui arbore, denumit *arbore de acoperire* (eng. *coverability tree*). În acest arbore, M_0 este rădăcina, iar marcajele generate sunt noduri; fiecare arc corespunde executării unei tranziții care transformă marcajul asociat nodului de plecare în marcajul asociat nodului de sosire.

În cazul unei rețele Petri *mărginite*, arborele de acoperire se numește *arbore de accesibilitate* (eng. *reachability tree*), deoarece poate cuprinde *toate* marcajele accesibile pornind din marcajul inițial M_0 (care sunt în număr finit) (ilustrare în AP2.4, AP3.1, AP3.2, AP3.5 și AP3.6). În această situație, arborele de accesibilitate poate fi utilizat pentru studierea *tuturor* proprietăților comportamentale. Un posibil dezavantaj îl constituie numărul mare de noduri ce poate rezulta în arborele de accesibilitate, ca urmare a complexității rețelei Petri studiate.

În cazul rețelelor Petri *nemărginite*, arborele de acoperire va crește la nesfârșit. Pentru a păstra finititudinea reprezentării de tip arbore de acoperire, se introduce un simbol special ω care poate lua valori *oricât de mari*, în sensul satisfacerii următoarelor proprietăți:

$$\forall n \in \mathbb{N} : \quad \omega > n,$$

$$\forall n \in \mathbb{N} : \quad \omega + n = \omega,$$

$$\omega \ge \omega.$$
(BT3.3.1)

Construcția sistematică a arborelui de acoperire a unei rețele (N, M_0) se desfășoară conform următorului algoritm (ilustrare în **AP3.3**):

- *Pas 1*. Se stabilește M_0 ca rădăcină și se etichetează M_0 ca "marcaj nou".
- *Pas 2.* Atât timp cât există cel puțin un marcaj etichetat drept "*marcaj nou*" se efectuează următorii subpași:
 - Subpas 2.1. Se selectează un "marcaj nou" M.
 - Subpas 2.2. Dacă *M* este identic cu un marcaj de pe drumul de la rădăcină la *M*, atunci marcajul *M* se etichetează drept "*marcaj vechi*" și se trece la un alt "*marcaj nou*".
 - Subpas 2.3. Dacă pentru *M*, nici o tranziție nu este validată, atunci *M* se etichetează ca "marcaj de deadlock".
 - Subpas 2.4. Dacă pentru *M* există tranziții validate, atunci pentru *fiecare* tranziție *t* validată se efectuează următoarele etape:
 - *Etapa* 2.4.1. Se obține marcajul *M*' care rezultă din executarea tranziției *t*, pornind de la marcajul *M*.
 - *Etapa* 2.4.2. Dacă pe drumul de la rădăcină la M există un marcaj M'' astfel încât $M'(p) \ge M''(p)$ pentru orice poziție p și $M' \ne M''$ (în sensul că pentru cel puțin o poziție p inegalitatea $M'(p) \ge M''(p)$ este strictă), atunci M'(p) se înlocuiește cu ω pentru fiecare poziție p în care avem inegalitatea strictă $M'(p) \ge M''(p)$ (adică marcajul M' acoperă marcajul M''.)
 - *Etapa* 2.4.3. Se introduce *M*' ca nod al arborelui de acoperire, se trasează un arc de la *M* la *M*' corespunzând tranziției *t* și se etichetează *M*' drept "*marcaj nou*".

<u>Observație:</u> În cazul rețelelor *nemărginite*, studierea proprietății de *viabilitate* cu ajutorul arborelui de acoperire nu este întotdeauna posibilă. Acest fapt se datorează pierderii (prin utilizarea simbolului ω) unor informații numerice concrete, referitoare la marcajul pozițiilor nemărginite (de exemplu creșterea sau descreșterea marcajului).

BT3.3.2. Grafuri de acoperire/accesibilitate

Graful de acoperire (eng. *coverability graph*) asociat unei rețele Petri (N, M_0) mărginite, este un graf orientat G = (V, E). Mulțimea nodurilor V este dată de mulțimea tuturor marcajelor distincte din arborele de acoperire. Mulțimea arcelor orientate E servește pentru a uni oricare două marcaje M_i , M_j din V, dacă există o tranziție t_k a cărei executare duce de la M_i la M_j ; arcele din E corespund arcelor din arborele de acoperire (ilustrare în **AP3.3**).

În cazul rețelelor Petri *mărginite*, graful de acoperire este referit drept *graf de* accesibilitate (eng. reachability graph), întrucât nodurile acestuia sunt chiar marcajele accesibile ale rețelei, adică $V \equiv R(M_0)$. Grafurile de accesibilitate pot fi utilizate pentru studierea tuturor proprietăților comportamentale ale rețelelor Petri mărginite (ilustrare în **AP3.1** și **AP3.2**).

BT3.4. Ecuația de stare

Se consideră o rețea Petri pură N (în care nu există bucle autonome), cu n tranziții și m poziții. Se numește *matrice de incidență* (eng. *incidence matrix*) a rețelei, o matrice $A = [a_{ij}]$ de dimensiune $n \times m$, ale cărei elemente sunt numere întregi: - Cap. 3. Studierea proprietăților comportamentale — 31

$$a_{ij} = a_{ij}^+ - a_{ij}^-; \quad i = 1, ..., n, \quad j = 1, ..., m,$$
 (BT3.4.1)

unde:

• $a_{ii}^+ = W(t_i, p_j)$ este ponderea arcului *de la* tranziția t_i , *către* poziția sa de ieșire p_j ;

• $a_{ii}^- = W(p_i, t_i)$ este ponderea arcului *către* tranziția t_i , *de la* poziția sa de intrare p_j .

Matricele $A^+ = [a_{ij}^+]$ și $A^- = [a_{ij}^-]$ (de dimensiune $n \times m$) sunt referite drept *matrice de incidență de ieșire*, respectiv *matrice de incidență de intrare*. Din punctul de vedere al aplicațiilor, scrierea matricei de incidență A se poate face global, construind, mai întâi, matricele A^+ și A^- , după care se efectuează diferența $A = A^+ - A^-$.

Conform regulii de validare și executare a tranziției, se observă că a_{ij}^- și a_{ij}^+ reprezintă numărul de jetoane îndepărtate și, respectiv, adăugate în poziția p_j , atunci când tranziția t_i se execută o singură dată.

Să considerăm o secvență de executări de tranziții și să presupunem că cea de a *k*-a executare din această secvență are loc în tranziția t_i , adică tranziția desemnată prin t_i se află pe locul *k* în secvența de executări $\sigma = \underbrace{t_a}_{\text{locul 1 locul 2 locul k locul q}} \dots \underbrace{t_d}_{\text{locul q}}$.

Considerăm vectorul coloană u_k (de dimensiune $n \times 1$) ale cărui elemente sunt toate 0, cu excepția celui de al *i*-lea element care este 1 (corespunzător tranziției t_i , unde are loc cea de a *k*-a executare a secvenței) și notăm cu M_{k-1} , M_k vectorii coloană (de dimensiune $m \times 1$) corespunzători marcajului rezultat după cea de-a (k-1)-a, respectiv a *k*-a executare din secvența considerată. Schimbarea de marcaj după cea de a *k*-a executare este descrisă de egalitatea:

$$M_k - M_{k-1} = A^T \boldsymbol{u}_k, \quad k = 1, 2, \dots$$
 (BT3.4.2)

Această egalitate este uzual folosită sub forma echivalentă:

$$M_k = M_{k-1} + A^T u_k, \quad k = 1, 2, \dots$$
 (BT3.4.3)

și reprezintă *ecuația de stare* (eng. *state equation*) a rețelei Petri. Vectorul u_k se numește *vector de executare* sau *vector de control* (eng. *control vector*) (ilustrare în **AP3.4**).

Scriind ecuația de stare (BT3.4.3) pentru k = 1, 2, ..., q și sumând, se obține marcajul la care se ajunge pornind din M_0 , după executarea secvenței de tranziții σ :

$$M_{q} = M_{0} + \boldsymbol{A}^{T} \sum_{k=1}^{q} \boldsymbol{u}_{k} .$$
 (BT3.4.4)

Ecuația de stare poate fi utilizată pentru a aborda *probleme de accesibilitate*. Dacă un marcaj destinație M_d este accesibil din M_0 prin secvența de executări descrisă de vectorii \boldsymbol{u}_1 , \boldsymbol{u}_2 ,..., \boldsymbol{u}_d , ecuația (BT3.4.4) conduce la:

$$\boldsymbol{A}^T \boldsymbol{x} = \Delta \boldsymbol{M} , \qquad (BT3.4.5)$$

unde $\Delta M = M_d - M_0$ reprezintă diferența de marcaj și vectorul coloană $\mathbf{x} = \sum_{k=1}^{a} \mathbf{u}_k$ (care are toate elementele întregi nenegative) se numește *vectorul numărului de executări posibile*. Cel

de-al *i*-lea element al vectorului \mathbf{x} , i=1,..., n, conține numărul de executări ale tranziției t_i , i=1,..., n, în secvența ce transferă M_0 în M_d . Ecuația (BT3.4.5) furnizează o *condiție de tip* necesar pentru accesibilitate.

Teorema 3.4.1. Dacă pentru rețeaua Petri (N, M_0), marcajul M_d este accesibil din M_0 , atunci are loc egalitatea:

$$\operatorname{rang} \boldsymbol{A}^{T} = \operatorname{rang} \left[\boldsymbol{A}^{T} \vdots \Delta \boldsymbol{M} \right], \qquad (BT3.4.6)$$

unde A notează matricea de incidență a rețelei, iar ΔM este diferența de marcaj.

Importanța practică a **Teoremei 3.4.1** este dată de forma *echivalentă*, exprimată prin contrara reciprocei, care oferă o *condiție suficientă pentru neaccesibilitate*.

Teorema 3.4.2. Un marcaj M_d nu este accesibil din M_0 , dacă egalitatea de ranguri din (BT3.4.6) nu este satisfăcută (ilustrare în **AP3.4**).

BT3.5. Proprietăți ce decurg din apartenența rețelelor la anumite subclase de rețele Petri ordinare

În paragraful BT2.5 au fost prezentate sumar clasele de rețele Petri ordinare frecvent întâlnite în modelarea sistemelor cu evenimente discrete. Pentru două dintre acestea, și anume mașinile de stare și grafurile marcate, sunt prezentate în continuare metode de analiză a proprietăților de *viabilitate* și *siguranță*. Pentru celelalte clase de rețele Petri ordinare, vezi (Păstrăvanu, 1997).

Teorema 3.5.1. Dacă rețeaua Petri (N, M_0) este viabilă și sigură, atunci nu conține nici un nod (tranziție sau poziție) de tip sursă sau receptor, adică:

$$\forall x \in P \bigcup T: \quad {}^{\bullet}x \neq \emptyset \text{ si } x^{\bullet} \neq \emptyset. \tag{BT3.5.1}$$

Această *condiție necesară* este utilizată în practică în forma echivalentă (contrara reciprocei) care reprezintă un *criteriu suficient* pentru inexistența proprietăților de viabilitate *sau* siguranță.

Teorema 3.5.2. Dacă relația (BT3.5.1) nu este satisfăcută, atunci rețeaua Petri (N, M_0) este fie neviabilă, fie nesigură, fie neviabilă și nesigură.

O extindere a Teoremei 3.5.1 o reprezintă următoarea teoremă.

Teorema 3.5.3. Dacă rețeaua Petri (N, M_0) conexă (adică există un drum neorientat de la orice nod către orice nod din $P \cup T$). este viabilă și sigură, atunci N este un graf *tare conex* (adică există un drum orientat de la orice nod către orice nod din $P \cup T$).

BT3.5.1. Criterii de viabilitate și siguranță a mașinilor de stare

Pentru *maşinile de stare* există următoarele condiții *necesare şi suficiente* care decurg din criteriul de necesitate 3.5.3 și din faptul că executarea unei tranziții, în acest tip de rețea, deplasează *un singur* jeton dintr-o poziție în altă poziție.

Teorema 3.5.4. O mașină de stare (N, M_0) este viabilă dacă și numai dacă N este tare conex și M_0 are cel puțin un jeton.

Teorema 3.5.5. O mașină de stare (N, M_0) este sigură dacă și numai dacă M_0 are cel mult un jeton.

Teorema 3.5.6. O mașină de stare (N, M_0) viabilă este sigură dacă și numai dacă M_0 are un singur jeton.

BT3.5.2. Criterii de viabilitate și siguranță a grafurilor marcate

În fiecare poziție a unui graf marcat intră și, respectiv, iese câte un singur arc. Executarea unei tranziții constă în îndepărtarea unui singur jeton din fiecare poziție de intrare și adăugarea unui singur jeton în fiecare poziție de ieșire a tranziției în cauză.

Din topologia grafului marcat, constatăm că dacă o tranziție este plasată pe un anumit arc orientat, atunci o *singură* poziție de intrare și o *singură* poziție de ieșire a acestei tranziții aparțin *circuitului orientat* considerat. Din această constatare decurge următoarea *proprietate de invarianță*.

Teorema 3.5.7. Într-un graf marcat, numărul de jetoane în orice circuit orientat este invariant în raport cu numărul de executări, adică, pentru orice marcaj $M \in R(M_0)$ și pentru orice circuit *C*, avem egalitatea:

$$M(C) = M_0(C)$$
. (BT3.5.2)

O consecință imediată a acestui rezultat îl constituie faptul că dacă marcajul inițial nu plasează nici un jeton pe un anume circuit orientat, atunci, pentru orice marcaj accesibil, acest circuit va rămâne fară nici un jeton. Cu alte cuvinte, tranzițiile acestui circuit nu vor putea fi validate niciodată.

Să privim acum lucrurile în sens invers și să presupunem că o anumită tranziție nu ajunge să fie validată niciodată. Invalidarea este consecința existenței unei poziții de intrare fără nici un jeton. Pornind de la această poziție și deplasându-ne înapoi (pe arcele rețelei), vom ajunge, în final, la un circuit orientat care nu conține nici un jeton. Prin acest raționament, am demonstrat, de fapt, următoarea *condiție necesară și suficientă de viabilitate*.

Teorema 3.5.8. Un graf marcat este viabil, dacă și numai dacă marcajul inițial M_0 plasează *cel puțin* un jeton pe fiecare circuit orientat (ilustrare în **AP3.4**).

Întrucât o poziție poate aparține mai multor circuite, furnizăm încă un rezultat referitor la proprietățile marcajului.

Teorema 3.5.9. Numărul *maxim* de jetoane pe care le poate conține o poziție p a grafului marcat este egal cu *minimul* dintre numărul de jetoane pe care le plasează marcajul

- 33

inițial M_0 pe circuitele orientate $C_1, C_2, ..., C_a$, care conțin poziția respectivă:

$$M(p) \le \min \{M_0(C_1), ..., M_0(C_q)\}.$$
(BT3.5.3)

Acum suntem în măsură să formulăm o condiție necesară și suficientă de siguranță.

Teorema 3.5.10. Un graf marcat viabil este sigur dacă și numai dacă *orice* poziție aparține unui circuit orientat *C*, cu marcajul inițial $M_0(C) = 1$ (ilustrare în **AP3.4**).

În final putem intra în posesia unei condiții *necesare și suficiente de existență* a unui marcaj inițial *viabil și sigur*.

Teorema 3.5.11. Într-un graf marcat există un marcaj inițial viabil și sigur dacă și numai dacă acesta este tare conex.

Aplicații

AP3.1.

Se consideră rețelele Petri din fig. AP3.1.1. Pentru fiecare dintre aceste rețele, să se construiască arborele și graful de accesibilitate.

<u>Soluție</u>

A. Arborele de accesibilitate asociat rețelei Petri din fig. AP3.1.1.(a) este prezentat în fig. AP3.1.2.(a). Pentru a reprezenta marcajele etichetate drept "*marcaj vechi*" s-au utilizat caractere aldine. Graful de accesibilitate corespunzător este prezentat în fig. AP3.1.2.(b).

B. Arborele de accesibilitate asociat rețelei Petri din fig. AP3.1.1.(b) este prezentat în fig. AP3.1.3.(a). Pentru a reprezenta marcajele etichetate drept "*marcaj vechi*" s-au utilizat caractere aldine. Graful de accesibilitate corespunzător este prezentat în fig. AP3.1.3.(b).

Pornind de la informațiile din această soluție, cititorul este invitat să studieze proprietățile comportamentale ale celor două rețele din fig. AP3.1.1.

Fig. AP3.1.2. Arborele (a) și graful de accesibilitate (b) pentru rețeaua din fig. AP3.1.1.(a).

Fig. AP3.1.3. Arborele (a) și graful de accesibilitate (b) pentru rețeaua din fig. AP3.1.1.(b).

- 35

AP3.2.

Să se construiască arborele și graful de accesibilitate pentru rețeaua Petri din fig. AP3.2.1.

Fig. AP3.2.1. Rețeaua Petri utilizată în aplicația AP3.2.

<u>Soluție</u>

Arborele de accesibilitate al rețelei Petri din fig. AP3.2.1 este prezentat în fig. AP3.2.2. Marcajele de deadlock sunt evidențiate prin încadrarea într-un chenar. Se observă că, pentru această rețea Petri, arborele și graful de accesibilitate coincid.

$$M_{0} = (1, 0, 0, 1, 0, 0)$$

$$t_{2}$$

$$M_{1} = (0, 0, 0, 1, 1, 0)$$

$$M_{2} = (0, 1, 0, 1, 0, 0)$$

$$t_{4}$$

$$M_{3} = (0, 0, 1, 0, 0, 1)$$

$$t_{5}$$

$$M_{4} = (1, 0, 1, 0, 0, 0)$$

$$t_{1}$$

$$M_{5} = (0, 1, 1, 0, 0, 0)$$

$$M_{6} = (0, 0, 1, 0, 1, 0)$$

$$t_{3}$$

$$M_{7} = (0, 0, 0, 1, 0, 0)$$

$$deadlock$$

$$M_{7} = (0, 0, 0, 1, 0, 0)$$

Fig. AP3.2.2. Arborele (graful) de accesibilitate al rețelei Petri din fig. AP3.2.1.

Pornind de la informațiile din această soluție, cititorul este invitat să studieze proprietățile comportamentale ale rețelei din fig. AP3.2.1.

AP3.3.

Să se construiască arborele și graful de acoperire pentru rețelele Petri de capacitate infinită din fig. AP3.3.1.

Fig. AP3.3.1. Rețeaua Petri utilizată în aplicația AP3.3.

<u>Soluție</u>

A. Arborele de acoperire asociat rețelei Petri din fig. AP3.3.1.(a) este prezentat în fig. AP3.3.2.(a). Pentru a reprezenta marcajele etichetate drept "*marcaj vechi*" s-au utilizat caractere aldine.

Fig. AP3.3.2. Arborele (a) și graful de accesibilitate (b) pentru rețeaua din fig. AP3.3.1.(a).

B. Arborele de acoperire asociat rețelei Petri din fig. AP3.3.1.(a) este prezentat în fig. AP3.3.2.(a). Pentru a reprezenta marcajele etichetate drept "*marcaj vechi*" s-au utilizat caractere aldine.

Fig. AP3.3.3. Arborele (a) și graful de accesibilitate (b) pentru rețeaua din fig. AP3.3.1.(b).

Pornind de la informațiile din această soluție, cititorul este invitat să studieze proprietățile comportamentale ale celor două rețele din fig. AP3.3.1.

AP3.4.

Se consideră protocolul de comunicații studiat în AP2.4.

- 1. Să se verifice că rețeaua Petri care îl modelează (fig. AP2.4.1) are proprietățile de viabilitate, siguranță și reversibilitate.
- 2. Să se scrie ecuația de stare a rețelei Petri.
- 3. Utilizând ecuația de stare, să se arate că marcajul $M = [0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0]^T$ nu este accesibil din M_0 . Să se formuleze o interpretare fizică a acestui rezultat.

<u>Soluție</u>

1. Studiind arborele de accesibilitate al rețelei Petri din fig. AP2.4.1, prezentat în fig. AP2.4.2, putem afirma că rețeaua este viabilă, sigură (1-mărginită), și reversibilă.

Deoarece rețeaua Petri studiată este de tip graf marcat, pentru studiul proprietăților de viabilitate și siguranță se pot aplica **Teoremele 3.5.8** și **3.5.10**. Fiecare poziție a rețelei aparține unuia dintre următoarele trei circuite elementare orientate $C_1 = p_1 t_1 p_4 t_6 p_6 t_3$, $C_2 = p_1 t_1 p_2 t_2 p_5 t_4 p_7 t_6 p_6 t_3$, $C_3 = p_3 t_2 p_5 t_4 p_8 t_5$. Deoarece fiecare dintre aceste circuite are câte un singur jeton în marcajul inițial, rezultă că rețeaua este viabilă și sigură.

38 -

2. Matricea de incidență de ieșire și, respectiv, matricea de incidență de intrare, sunt date de:

[0	1	0	1	0	0	0	0		[1	0	0	0	0	0	0	0	
	0	0	0	0	1	0	0	0		0	1	1	0	0	0	0	0	
1 ⁺ -	1	0	0	0	0	0	0	0	1 ⁻ _	0	0	0	0	0	1	0	0	4^+ $4^ 7^{6\times8}$
А –	0	0	0	0	0	0	1	1	, A –	0	0	0	0	1	0	0	0	$, A, A \in \mathbb{Z}$
	0	0	1	0	0	0	0	0		0	0	0	0	0	0	0	1	
	0	0	0	0	0	1	0	0		0	0	0	1	0	0	1	0	

astfel că matricea de incidență este:

$$\boldsymbol{A} = \boldsymbol{A}^{+} - \boldsymbol{A}^{-} = \begin{bmatrix} -1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 & 0 & 1 & -1 & 0 \end{bmatrix}, \quad \boldsymbol{A} \in \mathbb{Z}^{6 \times 8} \,.$$

Să considerăm o secvență de executări de tranziții și să presupunem că cea de a *k*-a executare din această secvență are loc în tranziția t_i , adică tranziția desemnată prin t_i se află pe locul *k* în secvența de executări $\sigma = \underbrace{t_a}_{\text{locul 1 locul 2}} \underbrace{t_b}_{\text{locul k}} \dots \underbrace{t_d}_{\text{locul q}}$.

Ecuația de stare a rețelei Petri este:

 $M_k = M_{k-1} + A^T u_k, \quad k = 1, 2, ...,$

unde $u_k \in \mathbb{N}^6$ este vectorul de executare, ale cărui elemente sunt toate 0, cu excepția celui de al *i*-lea element care este 1 (corespunzător tranziției t_i , unde are loc cea de a *k*-a executare din secvența σ). Vectorii coloană $M_{k-1}, M_k \in \mathbb{N}^8$ corespund marcajului rezultat după cea de-a (k-1)-a și, respectiv, cea de-a a *k*-a executare din secvența considerată.

3. Pentru a verifica dacă marcajul M este accesibil din M_0 se aplică **Teorema 3.4.2** (care reprezintă un criteriu de incompatibilitate a ecuației algebrice (BT3.4.5)). În acest scop construim vectorul $\Delta M = M - M_0 = \begin{bmatrix} -1 & 0 & -1 & 1 & 1 & 0 & 1 & 0 \end{bmatrix}^T$. Deoarece rang $A^T = 5$ și rang $\begin{bmatrix} A^T \\ \vdots \\ \Delta M \end{bmatrix} = 6$, rezultă că marcajul M nu este accesibil din M_0 .

AP3.5.

Se consideră un sistem de calcul biprocesor, echipat cu două unități de disc D_1 , D_2 . Fiecare din cele două procesoare P_1 , P_2 execută câte o succesiune de taskuri, fiecare task necesitând ambele discuri. Succesiunea de taskuri executate de P_1 este referită prin ST₁, iar succesiunea de taskuri executată de P_2 este referită prin ST₂. Execuția fiecărui task din ST₁ necesită mai întâi D_1 ; apoi, păstrând alocarea lui D_1 , se solicită alocarea lui D_2 ; în final D_1 și D_2 sunt

- 39

eliberate simultan. Execuția fiecărui task din ST_2 necesită mai întâi D_2 ; apoi, păstrând alocarea lui D_2 , se solicită alocarea lui D_1 ; în final D_1 și D_2 sunt eliberate simultan. O reprezentare schematizată a funcționării sistemului de calcul este dată în fig. AP3.3.1.

Fig. AP3.5.1. Reprezentarea schematizată a funcționării sistemului de calcul studiat în AP3.5.

Nu există nici o informație apriori privind duratele de timp cât taskurile din ST_1 sau ST_2 ocupă D_1 și D_2 . La momentul inițial atât procesoarele, cât și discurile, sunt libere.

- 1. Să se construiască un model tip rețea Petri netemporizată pentru funcționarea sistemului de calcul, precizând semnificația fizică a pozițiilor și a tranzițiilor.
- 2. Să se construiască graful de accesibilitate pentru modelul de tip rețea Petri.
- 3. Să se investigheze posibilitatea producerii fenomenului de deadlock în sistem.
 - a) Se va preciza marcajul rețelei Petri pentru care se ajunge în deadlock precum și secvențele de executări de tranziții care conduc la acesta.
 - b) Se va preciza succesiunea de operații executate în sistemul de calcul care conduce la deadlock și se va explica modul de blocare circulară a resurselor.
- 4. Să se modifice modelul construit la punctul 1 astfel încât să se poată evita producerea fenomenului de deadlock.
- 5. Să se simuleze în mediul *Petri Net Toolbox* modelul obținut la punctul 4, pentru 10.000 de taskuri servite complet de sistem, în următoarele situații de funcționare a sistemului:
 - (i) Taskurile din ST_1 și cele din ST_2 au aceeași probabilitate de servire.
 - (ii) Taskurile din ST₁ au probabilitate de servire mult mai mare decât cele din ST₂.
 - (iii) Taskurile din ST₂ au probabilitate de servire mult mai mare decât cele din ST₁.

Pentru fiecare din cele trei situații se va preciza numărul total de taskuri servite complet de fiecare din cele două procesoare.

<u>Soluție</u>

40

1. Modelul de tip rețea Petri corespunzător sistemului de calcul este prezentat în fig. AP3.5.2. Semnificația fizică a pozițiilor și tranzițiilor este următoarea:

- pentru poziții: P1 procesor P1 disponibil; P1D1 creare fișier pe D1; P1D1D2 copiere fișier de pe D1 pe D2; P2 procesor P2 disponibil; P2D2 creare fișier pe D2; P2D2D1 copiere fișier de pe D2 pe D1; D1 disc D1 disponibil; D2 disc D2 disponibil;
- pentru tranziții: t1 începerea operației de creare fișier pe discul D₁ de către procesorul P₁; t2 terminarea creării fișierului pe D₁ și începerea copierii pe discul D₂

de către P₁; t3 – terminarea unui task din ST₁; t4 – începerea operației de creare fișier pe discul D₂ de către procesorul P₂; t5 – terminarea creării fișierului pe D₂ și începerea copierii pe discul D₁ de către P₂; t6 – terminarea unui task din ST₂.

Fig. AP3.5.2. Modelul tip rețea Petri al sistemului de calcul biprocesor din fig. AP3.3.1.

<u>Observație:</u> Rețeaua Petri din fig. AP3.5.2 constituie un model pentru binecunoscuta problemă teoretică a doi filozofi chinezi care cinează împreună, formulată în (Dijkstra, 1968).

2. Arborele de accesibilitate corespunzător rețelei Petri din fig. AP3.5.2, construit de către mediul *Petri Net Toolbox* pe baza topologiei și marcajului inițial al rețelei, este prezentat în fig. AP3.5.3.

Fig. AP3.5.3. Arborele de acoperire al rețelei Petri din fig. AP3.3.2.

3. Pe arborele de accesibilitate prezentat în fig. AP3.5.3 se observă existența marcajului de deadlock $M_4 = (0, 0, 1, 0, 1, 0, 0, 0)$. Secvențele de executări de tranziții care conduc din marcajul inițial la cel de deadlock sunt $\sigma_1 = t_1 t_4$ și $\sigma_2 = t_4 t_1$.

Secvența σ_1 corespunde următoarei succesiuni de operații care are loc în sistemul de calcul: Procesorului P₁ i se alocă discul D₁, după care discul D₂ este alocat procesorului P₂. Succesiunea de operații corespunzătoare secvenței σ_2 este: Procesorului P₂ i se alocă discul D₂, după care discul D₁ este alocat procesorului P₁. Se ajunge astfel în starea în care fiecare disc este alocat pentru prima operație efectuată de câte unul dintre procesoare și nu poate fi eliberat deoarece fiecare procesor are nevoie (pentru terminarea corectă a taskului început) și de cel de-al doilea disc.

Datorită faptului că cele două discuri reprezintă resurse partajate în paralel de ST_1 și ST_2 și nu există nici un mecanism de asigurare a excluderii mutuale paralele, se ajunge la blocajul circular de resurse în sistemul de calcul.

4. Pentru rezolvarea situațiilor conflictuale și evitarea fenomenul de deadlock se pot utiliza mai multe metode care au în vedere impunerea unor condiții astfel încât un task odată început să-și termine execuția.

<u>Soluția 1</u>: Introducem o poziție suplimentară (notată cu V în fig. AP3.5.4.) care validează începerea unui task ce va fi complet servit.

Fig. AP3.5.4. Modelul de tip rețea Petri al sistemului de calcul prezentat în fig. AP3.5.2 cu o poziție suplimentară de validare.

<u>Soluția 2</u>: Dacă consultăm arborele de acoperire al rețelei Petri reprezentate în fig. AP3.5.2, observăm că în marcajul $M_1 = (0, 1, 1, 0, 0, 0, 0, 1)$ sunt validate tranzițiile t_2 și t_4 . Executarea tranziției t_2 asigură terminarea servirii unui client de către procesorul P₁ și eliberarea resurselor, în timp ce executarea lui t_4 conduce la deadlock. Similar, în marcajul $M_2 = (1, 0, 0, 0, 1, 0, 1, 0)$ sunt validate tranzițiile t_1 și t_5 , executarea lui t_1 conducând la deadlock.

Fenomenul de deadlock poate fi evitat impunând priorități între tranzițiile în conflict, și anume executarea tranziției t_2 să aibă prioritate față de executarea tranziției t_4 și, similar, executarea tranziției t_5 să aibă prioritate față de executarea tranziției t_1 .

<u>Soluția 3</u>: O altă metodă ce poate fi utilizată pentru a asigura evitarea blocajului circular de resurse este de a inhiba executarea tranziției t_4 după executarea lui t_1 , adică atunci când discul

 D_1 este alocat procesorului P_1 . În același timp, se inhibă executarea tranziției t_1 după executarea lui t_4 , adică atunci când discul D_2 este alocat procesorului P_2 (fig. AP3.5.5).

Fig. AP3.5.5. Modelul de tip rețea Petri al sistemului de calcul prezentat în fig. AP3.5.2 utilizând arce inhibitoare.

Ś	Petri Net Toolbox -	Web Browser	Ś	Petri Net Toolbox ·	- Web Browser	🖄 Petri Net Toolbox - Web Browser					
		Global S			Global S			Global S			
R	/lodel :newfile.xml		R	/lodel :newfile.xml			Model:newfile.xml				
E	vents:30000		E	vents:30000		1	Events:30000				
T	'ime :0		T	ime:0		-	Fime :0				
	Transition Name	Service Sum		Transition Name	Service Sum		Transition Name	Service Sum			
	t1	4971		t1	8988		t1	944			
	t2	4971		t2	8988		t2	944			
	t3	4971		t3	8988		t3	944			
	t4	5029		t4	1012		t4	9056			
	t5	5029		t5	1012		t5	9056			
	t6	5029		t6	1012		t6	9056			
	(a)			(b)			(c)				

Fig. AP3.5.6. Indicatorul Service Sum obținut după simularea servirii a 10000 de taskuri:
(a) taskurile din ST₁ și cele din ST₂ au aceeași probabilitate de servire;
(b) probabilitatea de servire a taskurilor din ST₁ este 0,9;
(c) probabilitatea de servire a taskurilor din ST₁ este 0,1.

5. Pentru oricare dintre cele trei modele prezentate la punctul 4, putem verifica prin simulare în mediul *Petri Net Toolbox* funcționarea corectă a sistemului de calcul. Deoarece servirii

complete a unui task de către fiecare dintre cele două procesoare îi corespunde apariția a 3 evenimente (executarea a 3 tranziții ale rețelei Petri), simularea servirii a 10.000 de taskuri este echivalentă cu apariția a 30.000 de evenimente. Probabilitățile de servire a taskurilor din ST_1 și ST_2 se asignează tranzițiilor t_1 și t_4 ale rețelei Petri.

Numărul de taskuri servite complet de procesorul P_1 este redat de indicatorul *Service Sum* (numărul de executări) pentru tranziția t_3 care este asociată terminării ultimei operații din ST₁. Pentru taskurile servite complet de procesorul P_2 consultăm același indicator, dar pentru tranziția t_6 (fig. AP3.5.6). Se observă că raportul dintre numărul de taskuri din ST₁ și numărul de taskuri din ST₂ servite complet este aproximativ egal cu raportul dintre probabilitățile de servire asignate tranzițiilor t_1 și, respectiv, t_4 .

AP3.6.

Se consideră un sistem de fabricație, adaptat după (Lewis et al., 1995), compus din două mașini: M_1 și M_2 , ambele fiind cu încărcare automată. Descărcarea celor două mașini este realizată de un robot R. Dacă R este liber și există o piesă finalizată pe una din mașini, robotul efectuează transportul, descărcând mașina în cauză. Între M_1 și M_2 există un depozit D în care pot fi stocate două piese. Pentru a putea fi prelucrate pe cele două mașini, piesele brute sunt fixate pe palete. În urma prelucrării, produsul finit este desfăcut de pe paletă, iar paleta liberă este returnată, pentru fixarea unei noi piese brute. În total se folosesc *x* palete. Se presupune că există un număr suficient de mare de piese brute care urmează să fie prelucrate. Întrucât piesele brute variază în dimensiuni, nu se poate face nici o precizare privind durata prelucrării pe mașina M_1 , respectiv M_2 . În fig. AP3.6.1. se prezintă schematizat structura procesului de fabricație. La momentul inițial mașinile și robotul sunt libere.

- 1. Să se construiască un model tip rețea Petri netemporizată pentru funcționarea procesului de fabricație, specificând semnificația fizică a pozițiilor și a tranzițiilor.
- 2. Să se investigheze posibilitatea producerii fenomenului de deadlock în funcție de numărul paletelor folosite $x \in \{1, 2, 3, 4, 5\}$. În cazul apariției deadlock-ului, se vor detalia următoarele aspecte:
 - (i) Se va preciza marcajul rețelei Petri pentru care se ajunge în deadlock precum și secvențele de executări de tranziții care conduc la acesta.
 - (ii) Se va preciza succesiunea de operații executate în sistemul de fabricație care conduce la deadlock și se va explica modul de blocare circulară a resurselor.
- Generalizând rezultatele de la punctul 2, să se investigheze posibilitatea producerii deadlock-ului în cazul unui număr arbitrar de palete. Să se determine numărul maxim de palete care asigură funcționarea fără deadlock a sistemului, indiferent de succesiunea de operații executate.
- 4. Să se arate că indiferent de numărul de palete utilizate există întotdeauna o succesiune de operații care permite funcționarea fără deadlock a sistemului.
- 5. În cazul funcționării sistemului cu 4 palete să se precizeze ce modificări trebuie aduse modelului construit la punctul 1 astfel încât să se poată evita producerea fenomenului de deadlock.

Fig. AP3.6.1. Reprezentarea schematizată a fluxului tehnologic din AP3.6.

<u>Soluție</u>

1. Modelul de tip rețea Petri pentru sistemul de fabricație din fig. AP3.6.1. este prezentat în fig. AP3.6.2. Pozițiile sunt etichetate în conformitate cu semnificația lor fizică. Marcajul inițial corespunde situației în care se utilizează x palete pentru transportarea pieselor în sistem și toate resursele sunt disponibile.

Fig. AP3.6.2. Modelul tip rețea Petri netemporizată pentru sistemul de fabricație prezentat în fig. AP3.6.1.

Semnificația fizică a pozițiilor și tranzițiilor este următoarea:

 pentru poziții: PM1 – prelucrarea unei piese pe mașina M₁; TR1 – descărcarea mașinii M₁ de către robot; WB – operația de stocarea în depozit; PM2 – prelucrarea unei piese

45

pe M_2 ; TR2 – descărcarea mașinii M_2 de către robot; P – resursă generală care modelează disponibilitatea paletelor;

pentru tranziții: t₁ – fixarea unei piese pe paletă şi începerea prelucrării pe M₁; t₂ – terminarea prelucrării pe M₁ şi începerea transportului în depozit; t₃ – terminarea transportului piesei de către robot şi începerea stocării piesei în depozit; t₄ – încărcarea unei piese din depozit pe maşina M₂ şi începerea prelucrării; t₅ – terminarea prelucrării pe M₂ şi începerea transportului de către robot la ieşire; t₆ – terminarea transportului la ieşire de către robot şi eliberare palete.

2. În cazul în care se utilizează 1, 2 sau 3 palete, fenomenul de deadlock nu apare, fapt vizibil în fig. AP3.6.3, în care este prezentat arborele de accesibilitate (construit cu ajutorul *Petri Net Toolbox*) în cazul utilizării unui număr de 3 palete.

Ë	Petri Net Toolbox - Web Browser														×				
Γ						PN	ΙΤοο	lbox	- C	over	abili	ty tı	ee						
F	rom	Fired	То	From	Fired	То	From	Fired	То	From	Fired	То	From	Fired	То	From	Fired	То	
	MO	t1	M1	M1	t2	M2	M2	t1	М3	M2	t3	M4	МЗ	t3	M5	M4	t1	M5	
	M4	t4	M6	M5	t2	M7	M5	t4	M8	M6	t1	M8	M6	t5	M9	M7	t1	M10	
	M7	t3	M11	M7	t4	M12	M8	t2	M12	M8	t5	M13	M9	t1	M13	M9	t6	MO	
	M10	t3	M14	M10	t4	M15	M11	t1	M14	M11	t4	M16	M12	t1	M15	M12	t3	M16	
	M13	t6	M1	M14	t2	M17	M14	t4	M18	M15	t3	M18	M16	t1	M18	M16	t5	M19	
	M17 t4 M20 M18 t2 M20 M18 t5 M21 M19 t1 M21													t4	M22	M19	t6	M4	
	M20 t3 M23 M21 t4 M24 M21 t6 M5 M22 t1 M24													t6	M6	M23	t5	M25	
	M24 t6 M8 M25 t4 M26 M25 t6 M11 M26 t6 M16																		
Г						M[PM1,T	R1,DC),PM	2, TR 2,	,M1,D,	M2,R	.,P]						
F		M0 = [0,0,0,0),0,1,2,1	1,1,3]	_		M1 = [1,0,0,0),0,0,2,1	1,1,2]		_	M2 = [0,1,0,0	0,0,1,2,1	,0,2]		
F		M3 = [1,1,0,0),0,0,2, ²	1,0,1]			M4 = [0,0,1,0),0,1,1,1	1,1,2]		M5 = [1,0,1,0,0,0,1,1,1,1]						
F		M6 = [0,0,0,1	1,0,1,2,0	0,1,2]			M7 = [0,1,1,0),0,1,1,1	1,0,1]			M8 = [1,0,0,1	1,0,0,2,0),1,1]		
F		M9 = [0,0,0,0),1,1,2,1	1,0,2]			M10 =	[1,1,1,	0,0,0,1,	1,0,0]			M11 =	[0,0,2,	0,0,1,0,	1,1,1]		
F		M12 =	[0,1,0,	1,0,1,2,	0,0,1]			M13 =	[1,0,0,	0,1,0,2,	1,0,1]			M14 =	[1,0,2,	,0,0,0,0,	1,1,0]		
F		M15 =	[1,1,0,	1,0,0,2,	0,0,0]			M16 =	[0,0,1,	1,0,1,1,	0,1,1]			M17 =	[0,1,2,	0,0,1,0,	1,0,0]		
F		M18 =	[1,0,1,	1,0,0,1,	0,1,0]			M19 =	[0,0,1,	0,1,1,1,	1,0,1]			M20 =	[0,1,1,	1,0,1,1,	0,0,0]		
M21 = [1,0,1,0,1,0,1,1,0,0] M22 = [0,0,0,1,1,1,2,0,0,1] M23 = [0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,												1,0,1,0,	0,1,0]						
Γ		M24 =	[1,0,0,	1,1,0,2,	0,0,0]			M25 =	[0,0,2,	0,1,1,0,	1,0,0]			M26 =	[0,0,1,	1,1,1,1,	0,0,0]		
													,						
									Ok	Save									

Fig. AP3.6.3. Arborele de accesibilitate pentru sistemul de fabricație din fig. AP3.6.2 în cazul utilizării unui număr de 3 palete.

Dacă se utilizează cel puțin 4 palete, apare fenomenul de blocare circulară a resurselor. Arborele de accesibilitate corespunzător utilizării a 4 palete (construit cu ajutorul *Petri Net Toolbox*) este prezentat în fig. AP3.6.4, în care marcajul $M_{29} = (0, 1, 2, 1, 0, 1, 0, 0, 0, 0)$ este

46 —

marcajul de deadlock. Urmărind secvențele de executări de tranziții din arborele de accesibilitate se observă că sistemul ajunge în deadlock numai din starea M_{27} (în care ambele spații din depozit sunt ocupate, o piesă este în curs de prelucrare pe M_1 și alta pe M_2) când sunt validate tranzițiile t_2 și t_5 . Executarea tranziției t_5 înseamnă eliberarea mașinii M_2 și posibilitatea continuării fluxului de producție, în timp ce executarea lui t_2 revine la ocuparea robotului cu piesa descărcată de pe M_1 și, respectiv, la invalidarea operației de eliberare a mașinii M_2 . Blocajul circular de resurse constă în faptul că M_2 așteaptă R pentru descărcare, D așteaptă loc liber pe M_2 și R așteaptă loc liber în D.

PNToolbox - Coverability tree From Fired To Fired To <tht< th=""><th>👸 Petri N</th><th colspan="13">tri Net Toolbox - Web Browser</th></tht<>	👸 Petri N	tri Net Toolbox - Web Browser																
From Fired To Fired						PN	Тоо	lbox	- C	over	abili	ty tr	ee					
M0 t1 M1 M2 M2 M2 t1 M3 M2 t3 M4 M3 t3 M6 M4 t1 M5 M4 t4 M6 M5 t2 M7 M5 t4 M8 M6 t1 M8 M6 t5 M9 M7 t1 M10 M7 t3 M11 M7 t4 M12 M8 t2 M12 M8 t5 M13 M9 t1 M13 M9 t5 M0 M10 t3 M14 M10 t4 M15 M11 t1 M14 M16 M15 t3 M18 M16 t1 M18 M16 t1 M18 M16 t1 M18 M16 t1 M18 M16 M16 M17 t4 M24 M21 M18 M18 M16 M11 M22 M19 M1 M22 M18 M26 M22 M26 M	From	Fired	То	From	Fired	То	From	Fired	То	From	Fired	То	From	Fired	То	From	Fired	То
M4 t4 M6 M5 t2 M7 M5 t4 M8 M6 t1 M8 M6 t5 M9 M7 t1 M10 M7 t3 M11 M7 t4 M12 M8 t2 M12 M8 t5 M13 M9 t1 M13 M9 t1 M13 M9 t5 M0 M10 t3 M14 M10 t4 M15 M11 t1 M14 M16 M15 M15 M16 M15 M16 M17 t4 M21 M18 M15 M18 M16 t1 M18 M16 M17 t4 M23 M21 M18 M16 M11 M22 M19 t4 M23 M21 M1 M24 M21 M21 M27 M25 M26 M26 M16 M32 M31 M26 M11 M30 t4 M32 M31 M31 M31 M31<	MO	t1	M1	M1	t2	M2	M2	t1	МЗ	M2	t3	M4	МЗ	t3	M5	M4	t1	M5
M7 t3 M11 M7 t4 M12 M8 t2 M12 M8 t5 M13 M9 t1 M13 M9 t6 M0 M10 t3 M14 M10 t4 M15 M11 t1 M14 M11 t4 M16 M12 t1 M16 M12 t3 M18 M13 t6 M1 M14 t2 M17 M14 t4 M18 M15 t3 M18 M16 t1 M18 M16 t1 M18 M16 t1 M18 M16 t1 M18 M17 t4 M21 M18 M2 M18 M21 M18 M21 M18 M21 M18 M26 M19 M1 M22 M19 t4 M23 M19 t6 M4 M20 t4 M24 M21 M21 M26 M12 M28 M26 M14 M32 M36 M4 M31 M28 M26 M14 M32 M36 M36 M31 M33 M36 <t< td=""><td>M4</td><td>t4</td><td>M6</td><td>M5</td><td>t2</td><td>M7</td><td>M5</td><td>t4</td><td>M8</td><td>M6</td><td>t1</td><td>M8</td><td>M6</td><td>t5</td><td>M9</td><td>M7</td><td>t1</td><td>M10</td></t<>	M4	t4	M6	M5	t2	M7	M5	t4	M8	M6	t1	M8	M6	t5	M9	M7	t1	M10
M10 t3 M14 M10 t4 M15 M11 t1 M14 M11 t4 M16 M12 t1 M16 M12 t1 M12 t3 M16 t1 M16 M12 t1 M14 t2 M17 M14 t4 M18 M15 t3 M18 M16 t1 M12 M18 M13 M16 M17 M14 M14 M11 M14 M18 M12 M18 M16 M11 M12 M14 M13 M12 M13 M12 M13 M17 M14 M24 M21 M11 M23 M23 M21 M23 M25 M12 M13 M23 M26 M14 M33 M34 M33 M33 M36 M14 M33 M31 M30 M28 M33 M33 M3	M7	t3	M11	M7	t4	M12	M8	t2	M12	M8	t5	M13	M9	t1	M13	МЭ	t6	мо
M13 t5 M1 M14 t2 M17 M14 t4 M18 M15 t3 M18 M16 t1 M12 M18 M13 M16 t1 M16 t1 M12 M18 M13 M16 t1 M12 M13 M13 M16 t1 M12 M13 M13 M16 t1 M12 M13 M13 M14 M14 M13 M13 M14 M14 M13 M12 M11 M13 M14 M13 M24 M21 M13 M25 M12 M14 M13 M16 M18 M16 M13 M26 M16 M132 M16 M131 M28 M16 M11 M30 M34 M33 M33 M33 M33 M33 M33 M33	M10	t3	M14	M10	t4	M15	M11	t1	M14	M11	t4	M16	M12	t1	M15	M12	t3	M16
M17 t1 M20 M17 t4 M21 M18 t2 M18 t5 M22 M19 t1 M22 M19 t4 M23 M19 t6 M4 M20 t4 M24 M21 t1 M24 M21 t3 M25 M22 t4 M26 M22 t6 M18 M23 t1 M26 M23 t6 M6 M24 t3 M27 M25 t1 M26 t6 M11 M30 t4 M32 M30 t6 M14 M31 t1 M30 M28 t4 M31 M28 t6 M11 M30 t4 M32 M30 t6 M14 M31 t1 M30 M28 t6 M18 0	M13	t6	M1	M14	t2	M17	M14	t4	M18	M15	t3	M18	M16	t1	M18	M16	t5	M19
M19 t6 M4 M20 t4 M24 M21 t1 M24 M21 t3 M25 M22 t4 M26 M22 t6 M15 M23 t1 M26 M23 t6 M6 M24 t3 M27 M25 t1 M27 M25 t5 M28 M26 t6 M18 M27 t2 M29 M27 t5 M30 M28 t1 M30 M28 t6 M11 M30 t4 M32 M30 t6 M14 M31 t1 M31 t6 M16 M32 t6 M18 M3 M28 t6 M11 M30 t4 M32 M30 t6 M14 M31 t1 M31 t6 M16 M32 t6 M18 M31 M25 t10.0.0.0.0.1.2.1.0.3 M31 t4 M32 M31 M31 M31 M32 M31 M32 M31 M31 <td colspan="13">M17 t1 M20 M17 t4 M21 M18 t2 M21 M18 t5 M22 M19 t1 M22 M19</td> <td>M19</td> <td>t4</td> <td>M23</td>	M17 t1 M20 M17 t4 M21 M18 t2 M21 M18 t5 M22 M19 t1 M22 M19													M19	t4	M23		
M23 t1 M26 M23 t6 M6 M24 t3 M27 M25 t1 M27 M25 t5 M28 M26 t6 M8 M27 t2 M29 M27 t5 M30 M28 t1 M30 M28 t4 M31 M28 t6 M11 M30 t4 M32 M30 t6 M14 M31 t1 M32 M31 t6 M16 M32 t6 M18 a	M19	M19 t6 M4 M20 t4 M24 M21 t1 M24 M21 t3 M25												t4	M26	M22	t6	M5
M27 t2 M29 M27 t5 M30 M28 t1 M30 M28 t4 M31 M28 t6 M11 M30 t4 M32 M30 t6 M14 M31 t1 M32 M31 t6 M16 M32 t6 M18 <t< td=""><td>M23</td><td colspan="12">M23 t1 M26 M23 t6 M6 M24 t3 M27 M25 t1 M27</td><td>t5</td><td>M28</td><td>M26</td><td>t6</td><td>M8</td></t<>	M23	M23 t1 M26 M23 t6 M6 M24 t3 M27 M25 t1 M27												t5	M28	M26	t6	M8
M30 t6 M14 M31 t1 M32 M31 t6 M16 M32 t6 M18 M[PM1,TR1,DO,PM2,TR2,M1,D,M2,R,P] M0 = [0,0,0,0,1,2,1,1,4] M1 = [1,0,0,0,0,2,1,1,3] M2 = [0,1,0,0,0,1,2,1,0,3] M3 = [1,1,0,0,0,0,2,1,0,2] M4 = [0,0,1,0,0,1,1,1,1,3] M5 = [1,0,1,0,0,0,1,1,1,2] M6 = [0,0,0,1,1,2,0,1,3] M7 = [0,1,1,0,0,1,1,0,2] M8 = [1,0,0,1,0,0,2,0,1,2] M9 = [0,0,0,0,1,1,2,1,0,3] M10 = [1,1,1,0,0,1,1,0,1] M11 = [0,0,2,0,0,1,0,1,1,2] M12 = [0,1,0,1,0,1,2,0,0,2] M13 = [1,0,0,0,1,0,2,1,0,2] M14 = [1,0,2,0,0,0,0,1,0,1] M15 = [1,1,0,1,0,0,2,0,0,1] M16 = [0,0,1,1,0,1,1,0,1,2] M17 = [0,1,2,0,0,0,0,1,0,0] M18 = [1,0,1,1,0,0,1,0,1,1] M19 = [0,0,1,0,1,1,1,0,1,2] M17 = [0,1,2,0,0,0,0,1,0,0] M21 = [0,1,1,1,0,0,1,0,0,0] M25 = [0,0,2,1,0,1,0,0,1,1] M26 = [1,0,0,1,1,0,2,0,0,1] M27 = [1,0,2,0,1,0,0,1,0,0] M28 = [0,0,2,0,1,1,0,1,0,1] M29 = [0,1,2,1,0,1,0,0,0] M30 = [1,0,2,0,1,0,0,1,0,0] M31 = [0,0,1,1,1,1,0,0,1] M32 = [1,0,1,1,1,0,0,0]	M27	27 t2 M29 M27 t5 M30 M28 t1 M30 M28 t4 M31 M28 t6 M11 M30 t4 M32																
M[PM1,TR1,DO,PM2,TR2,M1,D,M2,R,P] M0 = [0,0,0,0,1,2,1,1,4] M1 = [1,0,0,0,0,2,1,1,3] M2 = [0,1,0,0,0,1,2,1,0,3] M3 = [1,1,0,0,0,2,1,0,2] M4 = [0,0,1,0,0,1,1,1,3] M5 = [1,0,1,0,0,0,1,1,1,2] M6 = [0,0,0,1,0,1,2,0,1,3] M7 = [0,1,1,0,0,1,1,1,0,2] M8 = [1,0,0,1,0,0,2,0,1,2] M9 = [0,0,0,0,1,1,2,1,0,3] M10 = [1,1,1,0,0,0,1,1,0,1] M11 = [0,0,2,0,0,1,0,1,1,2] M12 = [0,1,0,1,0,1,2,0,0,2] M13 = [1,0,0,0,1,0,2,1,0,2] M14 = [1,0,2,0,0,0,0,1,1,1] M15 = [1,1,0,1,0,0,2,0,0,1] M16 = [0,0,1,1,0,1,0,1,2] M17 = [0,1,2,0,0,0,0,1,0,0] M18 = [1,0,1,1,0,0,1,0,1,1] M19 = [0,0,1,0,1,1,1,0,1,2] M20 = [1,1,2,0,0,0,0,1,0,0] M21 = [0,1,1,1,0,1,1,0,0,0] M22 = [1,0,1,0,0,0,1,1] M23 = [0,0,0,1,1,1,2,0,0,2] M24 = [1,1,1,0,0,1,0,0,0] M25 = [0,0,2,1,0,1,0,0,1,1] M26 = [1,0,0,1,1,0,2,0,0,1] M27 = [1,0,2,1,0,0,0,0,1,0] M28 = [0,0,2,0,1,1,0,1,0,1] M29 = [0,1,2,1,0,1,0,0,0,0] M30 = [1,0,2,0,1,0,0,1,0,0] M31 = [0,0,1,1,1,1,0,0,1] M32 = [1,0,1,1,1,0,0,0]	М30	M30 t6 M14 M31 t1 M32 M31 t6 M16 M32 t6 M18																
MIP M1, K1, DO, FM2, FK2, M1, D, M2, K, FJ M0 = [0,0,0,0,1,2,1,1,4] M1 = [1,0,0,0,0,2,1,1,3] M2 = [0,1,0,0,0,1,2,1,0,3] M3 = [1,1,0,0,0,2,1,0,2] M4 = [0,0,1,0,0,1,1,1,1,3] M5 = [1,0,1,0,0,0,1,1,1,2] M6 = [0,0,0,1,0,1,2,0,1,3] M7 = [0,1,1,0,0,1,1,1,0,2] M8 = [1,0,0,1,0,0,2,0,1,2] M9 = [0,0,0,0,1,1,2,1,0,3] M10 = [1,1,1,0,0,0,1,1,0,1] M11 = [0,0,2,0,0,1,0,1,1,2] M12 = [0,1,0,1,0,1,2,0,0,2] M13 = [1,0,0,0,1,0,2,1,0,2] M14 = [1,0,2,0,0,0,0,1,0,1,1] M15 = [1,1,0,1,0,0,2,0,0,1] M16 = [0,0,1,1,0,1,1,0,1,2] M17 = [0,1,2,0,0,0,0,1,0,0] M18 = [1,0,1,1,0,0,1,0,1,1] M19 = [0,0,1,0,1,1,1,1,0,2] M20 = [1,1,2,0,0,0,0,1,0,0] M21 = [0,1,1,1,0,1,0,0,0] M22 = [1,0,1,0,0,0,1,1] M23 = [0,0,0,1,1,1,2,0,0,2] M24 = [1,1,1,1,0,0,1,0,0,0] M25 = [0,0,2,1,0,1,0,0,1,1] M26 = [1,0,0,1,1,0,2,0,0,1] M27 = [1,0,2,1,0,0,0,0,1,0] M28 = [0,0,2,0,1,1,0,1,0,1] M29 = [0,1,2,1,0,1,0,0,0,0] M30 = [1,0,2,0,1,0,0,1,0,0] M31 = [0,0,1,1,1,1,0,0,1] M32 = [1,0,1,1,1,0,1,0,0,0]						MIT	эм4 т			2 TD 2	M1 D	M2 D	D1					
M0 = $[0,0,0,0,1,2,1,1,4]$ M1 = $[1,0,0,0,0,0,2,1,1,3]$ M2 = $[0,1,0,0,0,1,2,1,0,3]$ M3 = $[1,1,0,0,0,0,2,1,0,2]$ M4 = $[0,0,1,0,0,1,1,1,1,3]$ M5 = $[1,0,1,0,0,0,1,1,1,2]$ M6 = $[0,0,0,1,0,1,2,0,1,3]$ M7 = $[0,1,1,0,0,1,1,1,0,2]$ M8 = $[1,0,0,1,0,0,2,0,1,2]$ M9 = $[0,0,0,0,1,1,2,1,0,3]$ M10 = $[1,1,1,0,0,0,1,1,0,1]$ M11 = $[0,0,2,0,0,1,0,1,1,2]$ M12 = $[0,1,0,1,0,1,2,0,0,2]$ M13 = $[1,0,0,0,1,0,2,1,0,2]$ M14 = $[1,0,2,0,0,0,0,1,0,1]$ M15 = $[1,1,0,1,0,0,2,0,0,1]$ M16 = $[0,0,1,1,0,1,1,0,1,2]$ M17 = $[0,1,2,0,0,1,0,1,0,1]$ M18 = $[1,0,1,1,0,0,1,0,1,1]$ M19 = $[0,0,1,0,1,1,1,1,0,2]$ M20 = $[1,1,2,0,0,0,0,1,0,0]$ M21 = $[0,1,1,1,0,1,1,0,0,1]$ M22 = $[1,0,1,0,1,0,1,1,0,1]$ M23 = $[0,0,0,1,1,1,2,0,0,2]$ M24 = $[1,1,1,1,0,0,0,0,0,0,0,0]$ M25 = $[0,0,2,0,1,1,0,0,1,1]$ M26 = $[1,0,0,1,1,0,2,0,0,1]$ M27 = $[1,0,2,1,0,0,0,0,1,0]$ M28 = $[0,0,2,0,1,1,0,1,0,1]$ M29 = $[0,1,2,1,0,1,0,0,0]$ M30 = $[1,0,2,0,1,0,0,1,0,0]$ M31 = $[0,0,1,1,1,1,1,0,0,1]$ M32 = $[1,0,1,1,1,0,0,0]$		NO - 1	0.0.0.0	0404		IAILI	- 1011,1		, F IVI	2,1KZ,		IVIZ,К	, - 1	N10 - 1	0400			
M3 = $[1,1,0,0,0,0,2,1,0,2]$ M4 = $[0,0,1,0,0,1,1,1,1,0]$ M5 = $[1,0,1,0,0,0,1,1,1,2]$ M6 = $[0,0,0,1,0,1,2,0,1,3]$ M7 = $[0,1,1,0,0,1,1,1,0,2]$ M8 = $[1,0,0,1,0,0,2,0,1,2]$ M9 = $[0,0,0,0,1,1,2,1,0,3]$ M10 = $[1,1,1,0,0,0,1,0,2,1,0,2]$ M11 = $[0,0,2,0,0,1,0,1,1,2]$ M12 = $[0,1,0,1,0,1,2,0,0,2]$ M13 = $[1,0,0,0,1,0,2,1,0,2]$ M14 = $[1,0,2,0,0,0,0,1,1,1]$ M15 = $[1,1,0,1,0,0,2,0,0,1]$ M16 = $[0,0,1,1,0,1,1,0,1,2]$ M17 = $[0,1,2,0,0,0,0,1,0,1]$ M18 = $[1,0,1,1,0,0,1,0,1,1]$ M19 = $[0,0,1,0,1,1,1,1,0,2]$ M20 = $[1,1,2,0,0,0,0,1,0,0]$ M21 = $[0,1,1,1,0,1,1,0,0,1]$ M22 = $[1,0,1,0,1,0,1,1,0,1]$ M23 = $[0,0,0,1,1,1,2,0,0,2]$ M24 = $[1,1,1,1,0,0,1,0,0,0]$ M25 = $[0,0,2,0,1,1,0,0,1,1]$ M26 = $[1,0,0,1,1,0,2,0,0,1]$ M27 = $[1,0,2,1,0,0,0,0,1,0]$ M28 = $[0,0,2,0,1,1,0,1,0,1]$ M29 = $[0,1,2,1,0,1,0,0,0]$ M30 = $[1,0,2,0,1,0,0,1,0,0]$ M31 = $[0,0,1,1,1,1,0,0,1]$ M32 = $[1,0,1,1,1,0,0,0]$		MU =		,0,1,2,1					1,0,0,1	J,U,U,Z,		M2 = [0, 1, 0, 0, 0, 1, 2, 1, 0, 3]						
MB = $[0,0,0,1,0,1,2,0,1,3]$ M7 = $[0,1,1,0,0,1,1,0,1]$ M8 = $[1,0,0,1,0,0,2,0,1,2]$ M9 = $[0,0,0,0,1,1,2,1,0,3]$ M10 = $[1,1,1,0,0,0,1,0,0]$ M11 = $[0,0,2,0,0,1,0,1,1,2]$ M12 = $[0,1,0,1,0,1,2,0,0,2]$ M13 = $[1,0,0,0,1,0,2,1,0,2]$ M14 = $[1,0,2,0,0,0,0,1,0,1,1,1]$ M15 = $[1,1,0,1,0,0,2,0,0,1]$ M16 = $[0,0,1,1,0,1,0,1,2]$ M17 = $[0,1,2,0,0,0,0,1,0,0,1]$ M18 = $[1,0,1,1,0,0,1,0,1,1]$ M19 = $[0,0,1,0,1,1,1,1,0,2]$ M20 = $[1,1,2,0,0,0,0,1,0,0]$ M21 = $[0,1,1,1,0,0,1,0,0,0]$ M22 = $[1,0,1,0,1,0,1,1]$ M23 = $[0,0,0,1,1,1,2,0,0,2]$ M24 = $[1,1,1,1,0,0,1,0,0,0]$ M25 = $[0,0,2,0,1,1,0,0,1,1]$ M26 = $[1,0,0,1,1,0,2,0,0,1]$ M27 = $[1,0,2,1,0,0,0,0,1,0]$ M28 = $[0,0,2,0,1,1,0,1,0,1]$ M29 = $[0,1,2,1,0,1,0,0,0]$ M30 = $[1,0,2,0,1,0,0,1,0,0]$ M31 = $[0,0,1,1,1,1,1,0,0,1]$ M32 = $[1,0,1,1,1,0,1,0,0,0]$		M3 =	[1,1,0,0	1,0,0,2,1	1,0,2]			1¥14 = [0,0,1,1,1			M5 = [1, 0, 1, 0, 0, 0, 1, 1, 1, 2]						
M9 = $[0,0,0,1,1,2,1,0,3]$ M10 = $[1,1,1,0,0,1,1,0,1]$ M11 = $[0,0,2,0,0,1,0,1,1,2]$ M12 = $[0,1,0,1,0,1,2,0,0,2]$ M13 = $[1,0,0,0,1,0,2,1,0,2]$ M14 = $[1,0,2,0,0,0,0,1,1,1]$ M15 = $[1,1,0,1,0,0,2,0,0,1]$ M16 = $[0,0,1,1,0,1,1,0,1,2]$ M17 = $[0,1,2,0,0,1,0,1,0,1]$ M18 = $[1,0,1,1,0,0,1,0,1,1]$ M19 = $[0,0,1,0,1,1,1,1,0,2]$ M20 = $[1,1,2,0,0,0,0,1,0,0]$ M21 = $[0,1,1,1,0,1,1,0,0,1]$ M22 = $[1,0,1,0,1,0,1,1,0,1]$ M23 = $[0,0,0,1,1,1,2,0,0,2]$ M24 = $[1,1,1,1,0,0,1,0,0,0]$ M25 = $[0,0,2,1,0,1,0,0,1,1]$ M26 = $[1,0,0,1,1,0,2,0,0,1]$ M27 = $[1,0,2,1,0,0,0,0,1,0]$ M28 = $[0,0,2,0,1,1,0,1,0,1]$ M29 = $[0,1,2,1,0,1,0,0,0]$ M30 = $[1,0,2,0,1,0,0,1,0,0]$ M31 = $[0,0,1,1,1,1,1,0,0,1]$ M32 = $[1,0,1,1,1,0,1,0,0,0]$		M6 =		1,0,1,2,0	J,1,3]			M17 = [U,1,1,1	0,0,1,1,1	1,0,2]			M8 = [1,0,0,	0.0.4.0	J,1,2]	
M12 = $[0,1,0,1,0,1,2,0,0,2]$ M13 = $[1,0,0,0,1,0,2,1,0,2]$ M14 = $[1,0,2,0,0,0,0,1,1,1]$ M15 = $[1,1,0,1,0,0,2,0,0,1]$ M16 = $[0,0,1,1,0,1,1,0,1,2]$ M17 = $[0,1,2,0,0,0,0,1,0,1]$ M18 = $[1,0,1,1,0,0,1,0,1,1]$ M19 = $[0,0,1,0,1,1,1,0,0,2]$ M20 = $[1,1,2,0,0,0,0,1,0,0]$ M21 = $[0,1,1,1,0,1,1,0,0,1]$ M22 = $[1,0,1,0,1,0,1,1,0,1]$ M23 = $[0,0,0,1,1,1,2,0,0,2]$ M24 = $[1,1,1,1,0,0,1,0,0,0]$ M25 = $[0,0,2,1,0,1,0,0,1,1]$ M26 = $[1,0,0,1,1,0,2,0,0,1]$ M27 = $[1,0,2,1,0,0,0,0,1,0]$ M28 = $[0,0,2,0,1,1,0,1,0,1]$ M29 = $[0,1,2,1,0,1,0,0,0]$ M30 = $[1,0,2,0,1,0,0,1,0,0]$ M31 = $[0,0,1,1,1,1,1,0,0,1]$ M32 = $[1,0,1,1,1,0,1,0,0,0]$		M9 =		4.0.4.0	1			M10 =	[1,1,1,	0,0,0,1,	1,0,1]			WITT =	[0,0,2,	0,0,1,0,	1,1,2]	
M15 = [1,1,0,1,0,0,2,0,0,1] M18 = [0,0,1,1,0,1,1,0,1,2] M17 = [0,1,2,0,1,0,1,0,1] M18 = [1,0,1,1,0,0,1,0,1,1] M19 = [0,0,1,0,1,1,1,0,2] M20 = [1,1,2,0,0,0,0,1,0,0] M21 = [0,1,1,1,0,1,1,0,0,1] M22 = [1,0,1,0,1,0,1,1,0,1] M23 = [0,0,0,1,1,1,2,0,0,2] M24 = [1,1,1,1,0,0,1,0,0,0] M25 = [0,0,2,1,0,1,0,0,1,1] M26 = [1,0,0,1,1,0,2,0,0,1] M27 = [1,0,2,1,0,0,0,0,1,0] M28 = [0,0,2,0,1,1,0,1,0,1] M29 = [0,1,2,1,0,1,0,0,0] M30 = [1,0,2,0,1,0,0,1,0,0] M31 = [0,0,1,1,1,1,0,0,1] M32 = [1,0,1,1,1,0,1,0,0,0]		N112 =	[0,1,0,	1,0,1,2,	0,0,2]			M10 -	[1,0,0, [0,0,4]	1010,2	0.4.01			M14 =	[1,0,2, [0,4,0	0,0,0,0,	1,1,1]	
M18 = [1,0,1,1,0,0,1,0,1,1] M19 = [0,0,1,0,1,1,1,0,2] M20 = [1,1,2,0,0,0,0,1,0,0] M21 = [0,1,1,1,0,1,1,0,0,1] M22 = [1,0,1,0,1,0,1,0,1] M23 = [0,0,0,1,1,1,2,0,0,2] M24 = [1,1,1,0,0,1,0,0,0] M25 = [0,0,2,1,0,1,0,0,1,1] M26 = [1,0,0,1,1,0,2,0,0,1] M27 = [1,0,2,1,0,0,0,0,1,0] M28 = [0,0,2,0,1,1,0,1,0,1] M29 = [0,1,2,1,0,1,0,0,0,0] M30 = [1,0,2,0,1,0,0,1,0,0] M31 = [0,0,1,1,1,1,0,0,1] M32 = [1,0,1,1,1,0,1,0,0,0]		M10 -	[1,1,0,	1,0,0,2,	0,0,1]			M10 -	10.0.1	.1.0.1.1.	4 0 01			M00 -	[0,1,2,	0,0,1,0,	1,0,1]	
M21 = [0, 1, 1, 1, 0, 1, 1, 0, 0, 1] $M22 = [1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1]$ $M23 = [0, 0, 0, 1, 1, 1, 2, 0, 0, 2]$ $M24 = [1, 1, 1, 1, 0, 0, 1, 0, 0, 0]$ $M25 = [0, 0, 2, 1, 0, 1, 0, 0, 1, 1]$ $M26 = [1, 0, 0, 1, 1, 0, 2, 0, 0, 1]$ $M27 = [1, 0, 2, 1, 0, 0, 0, 0, 1, 0]$ $M28 = [0, 0, 2, 0, 1, 1, 0, 1, 0, 1]$ $M29 = [0, 1, 2, 1, 0, 1, 0, 0, 0, 0]$ $M30 = [1, 0, 2, 0, 1, 0, 0, 1, 0, 0]$ $M31 = [0, 0, 1, 1, 1, 1, 1, 0, 0, 1]$ $M32 = [1, 0, 1, 1, 1, 0, 1, 0, 0, 0]$		M18 =	[1,0,1,	1,0,0,1,	0,1,1]			M19 =	[U,U,1,	0,1,1,1,	1,0,2]			M20 =	[1,1,2,	,U,U,U,U,	1,0,0]	
M24 = [1,1,1,1,0,0,1,0,0,0] M25 = [0,0,2,1,0,1,0,0,1,1] M26 = [1,0,0,1,1,0,2,0,0,1] M27 = [1,0,2,1,0,0,0,0,1,0] M28 = [0,0,2,0,1,1,0,1,0,1] M29 = [0,1,2,1,0,1,0,0,0] M30 = [1,0,2,0,1,0,0,1,0,0] M31 = [0,0,1,1,1,1,0,0,1] M32 = [1,0,1,1,1,0,1,0,0]		M24 -	[U, I, I,	1,0,1,1,	0,0,1]			W122 =	[1,0,1, [0,0,0	1010,1	0.4.41			M23 =	[U,U,U,	1,1,1,2,	0,0,2]	
M27 = [1,0,2,1,0,0,0,1,0] M28 = [0,0,2,0,1,0,1] M28 = [0,1,2,1,0,1,0,0,0] M30 = [1,0,2,0,1,0,0,1,0,0] M31 = [0,0,1,1,1,1,0,0,1] M32 = [1,0,1,1,1,0,1,0,0,0]	-	M07 -	[1,1,1,	1,0,0,1,				M00 -	[U,U,Z,	.1.0.1.0.	1 0 11			M20 -	[1,0,0, [0,4,0	1,1,0,2,	0,0,1]	
		M20 -	[1,0,2,	1,0,0,0,	1 0 01			W20 -	[U,U,Z,	.U.I.I.U. 4 4 4 4	0.0.11			<u>M20 -</u>	[U, I,Z,	1 1 0 1		
	ļ	W30 =	[1,0,2,	0,1,0,0,	1,0,0]			war =	[0,0,1	.1,1,1,1,	0,0,1]			W3Z =	[1,0,1,	0, 1,	0,0,0]	
									ok -	Cana								

Fig. AP3.6.4. Arborele de accesibilitate pentru sistemul de fabricație din fig. AP3.6.2 în cazul utilizării unui număr de 4 palete.

3. Generalizând rezultatele obținute la punctul anterior, se observă că în situația în care se utilizează 4 sau mai multe palete, în sistemul de fabricație apare blocarea circulară a resurselor. Numărul maxim de palete pentru care acest fenomen nu se produce este 3.

4. Din discuția anterioară rezultă că fenomenul de deadlock nu s-ar produce (indiferent de numărul de palete din sistem) dacă, ori de câte ori sunt validate simultan tranzițiile t_2 și t_5 (adică robotul este în situația de a descărca oricare dintre mașini), s-ar executa t_5 (robotul eliberează M₂).

5. Constatarea de la punctul anterior este tot una cu existența unui mecanism de asignare a priorităților ce asigură prioritate în executarea lui t_5 în raport cu executarea lui t_2 , atunci când ambele sunt validate. Pentru situația utilizării unui număr de 4 palete, arborele de accesibilitate (construit cu ajutorul *Petri Net Toolbox*) este prezentat în fig. AP3.6.5; se poate observa că nu mai există marcaj de dealock.

👸 Petri N	SPetri Net Toolbox - Web Browser																	
					PN	Тоо	lbox	- C	over	abili	ty tr	ee						
From	Fired	То	From	Fired	То	From	Fired	То	From	Fired	То	From	Fired	То	From	Fired	То	
MO	t1	M1	M1	t2	M2	M2	t1	MЗ	M2	t3	M4	МЗ	t3	M5	M4	t1	M5	
M4	t4	M6	M5	t2	M7	M5	t4	M8	M6	t1	M8	M6	t5	M9	M7	t1	M10	
M7	t3	M11	M7	t4	M12	M8	t5	M13	Мэ	t1	M13	M9	t6	MO	M10	t3	M14	
M10	t4	M15	M11	t1	M14	M11	t4	M16	M12	t1	M15	M12	t3	M16	M13	t6	M1	
M14	M14 t2 M17 M14 t4 M18 M15 t3 M18 M16 t1 M												t5	M19	M17	t1	M20	
M17	M17 t4 M21 M18 t5 M22 M19 t1 M22 M19 t4 M23												t6	M4	M20	t4	M24	
M21	M21 t1 M24 M21 t3 M25 M22 t4 M26 M22 t6 M5												t1	M26	M23	t6	M6	
M24	M24 t3 M27 M25 t1 M27 M25 t5 M28 M26 t6 M8												t5	M29	M28	t1	M29	
M28	t4	М30	M28	t6	M11	M29	t4	M29	t6	M14	M30	t1	M31	M30	t6	M16		
M31	M31 t6 M18																	
—																		
<u> </u>					INILI	-111,1	R1,DC	, P INI	2,182,	M1,D,	IVIZ,R	., rj						
	M0 = [0,0,0,1	0,0,1,2,1	1,1,4]		M1 = [1,0,0,0,0,0,2,1,1,3]							M2 = [0,1,0,0,0,1,2,1,0,3]					
	M3 = [1,1,0,0	0,0,0,2,	1,0,2]			M4 = [0,0,1,0	0,0,1,1,1	,1,3]		M5 = [1,0,1,0,0,0,1,1,1,2]						
	M6 = [0,0,0,	1,0,1,2,0	0,1,3]			M7 = [0,1,1,0	0,0,1,1,1	,0,2]		M8 = [1,0,0,1,0,0,2,0,1,2]						
	M9 = [0,0,0,1	0,1,1,2,1	1,0,3]			M10 =	[1,1,1,	0,0,0,1,	1,0,1]			M11 =	[0,0,2,	0,0,1,0,	1,1,2]		
	M12 =	[0,1,0,	1,0,1,2,	0,0,2]			M13 =	[1,0,0,	0,1,0,2,	1,0,2]			M14 =	[1,0,2,	0,0,0,0,	1,1,1]		
	M15 =	[1,1,0,	1,0,0,2,	0,0,1]			M16 =	[0,0,1,	1,0,1,1,	0,1,2]			M17 =	[0,1,2,	0,0,1,0,	1,0,1]		
	M18 =	[1,0,1,	1,0,0,1,	0,1,1]			M19 =	[0,0,1,	0,1,1,1,	1,0,2]			M20 =	[1,1,2,	0,0,0,0,	1,0,0]		
	M21 =	[0,1,1,	,1,0,1,1,	0,0,1]			M22 =	[1,0,1,	0,1,0,1,	1,0,1]			M23 =	[0,0,0,	1,1,1,2,	0,0,2]		
M24 = [1,1,1,1,0,0,1,0,0,0] M25 = [0,0,2,1,0,1,										0,1,1]			M26 =	[1,0,0,	1,1,0,2,	0,0,1]		
M27 = [1,0,2,1,0,0,0,0,1,0] M28 = [0,0,2,0,1,1,0,1,0,1]										1,0,1]			M29 =	[1,0,2,	0,1,0,0,	1,0,0]		
	M30 =	[0,0,1,	1,1,1,1,1	0,0,1]			M31 =	[1,0,1,	1,1,0,1,	0,0,0]								
								Ok	Save									

Fig. AP3.6.5. Arborele de accesibilitate pentru sistemul de fabricație din fig. AP3.6.2. în cazul utilizării unui număr de 4 palete și setarea de priorități între t₂ și t₅.

Capitolul 4

Controlul procedural al sistemelor cu evenimente discrete

Breviar teoretic

BT4.1. Specificații de proiectare pentru structurile de conducere

Un proces tehnic cu funcționarea pilotată de evenimente este constituit dintr-o *mulțime de resurse* care sunt utilizate pentru a efectua o *succesiune de operații*. Realizarea fiecărei operații necesită *alocarea* uneia sau mai multor resurse care sunt *eliberate* după încheierea operației respective.

Procesul are drept intrare un număr de *clienți* (nume generic desemnând entități a căror natură fizică depinde de specificul procesului). Fiecare operație realizată de proces reprezintă un anumit tip de *serviciu* prestat unui client. În urma parcurgerii *secvențiale* a întregii succesiuni de operații, un client este *servit complet* și poate părăsi procesul. Astfel, *ieșirea* procesului constă în numărul de clienți serviți complet.

În cazul general, diferiți clienți pot necesita diferite succesiuni de operații. În aplicațiile practice uzuale, numărul de succesiuni diferite de operații (linii de servire diferite) este de ordinul unităților.

Problematica conducerii unui astfel de proces constă în a asigura îndeplinirea următoarelor condiții de funcționare:

(C1) corectitudinea succesiunii de operații pentru toți clienții;

- (C2) corectitudinea alocării și eliberării resurselor necesare de fiecare operație în parte;
- (C3) prestarea unui anumit tip de serviciu de îndată ce resursele necesare pentru operația respectivă sunt disponibile (adică, maximizarea numărului de clienți aflați în curs de servire, în etape diferite);
- (C4) repetabilitatea prestării serviciilor fără blocaje circulare datorate utilizării partajate a unora dintre resurse.

O *structură de conducere* (proces + controler), reprezentată prin schema bloc din fig. BT4.1.1, ce asigură satisfacerea condițiilor de funcționare (C1) - (C4) exploatează numai *proprietăți de tip logic* (independente de durata operațiilor) și, drept consecință, descrierea acestei structuri poate fi abordată prin formalismul rețelelor Petri netemporizate.

Fig. BT4.1.1. *Reprezentarea sub formă de schemă bloc a structurii de conducere a unui proces cu evenimente discrete.*

BT4.2. Proiectarea structurilor de conducere prin tehnici de sinteză hibridă

Sinteza hibridă furnizează o rețea Petri care modelează atât efectuarea operațiilor cât și utilizarea resurselor. Sinteza *hibridă* combină avantajele unei sinteze *descendente* (eng. *top-down*), urmată de o sinteză *ascendentă* (eng. *bottom-up*). În general, sinteza *descendentă* se aplică în rafinarea necesară modelării tuturor detaliilor privind modul în care se succed operațiile, iar sinteza *ascendentă* permite modelarea modului de utilizare a resurselor. În acest scop resursele se clasifică în:

- Resurse generale care sunt alocate unui client în momentul intrării acestuia în sistem, se utilizează pe tot parcursul servirii și sunt eliberate în momentul când servirea este completă (și clientul părăsește sistemul). O resursă generală poate fi *simplă* sau *multiplă*. În acest din urmă caz, resursa dispune de mai multe unități fizice similare, care pot fi alocate mai multor clienți de același tip.
- Resurse specifice care sunt alocate unui client numai pentru prestarea anumitor tipuri de servicii (operații) și sunt eliberate de îndată ce acele servicii au fost efectuate. O resursă specifică este simplă. Ea poate fi utilizată *nepartajat*, pentru realizarea unei singure operații (sau secvențe de operații), sau *partajat*, pentru realizarea mai multor operații (sau secvențe de operații).
- *Resurse de stocare* (tip depozit sau tampon) care pun la dispoziție un spațiu fizic (a cărui natură depinde de tipul procesului) în care un număr limitat de clienți pot aștepta servirea de către o resursă specifică. O resursă de stocare este în general multiplă, întrucât oferă mai multe zone disponibile de așteptare în care se pot găsi mai mulți clienți.

BT4.2.1. Rafinarea operațiilor prin sinteză descendentă

BT4.2.1.1. Prezentarea generală a procedurii de rafinare

Modelul global considerat *inițial* (de la care pornește expandarea) este o rețea Petri cu o topologie foarte simplă, *mărginită* (*sigură*), *viabilă* și *reversibilă* ce conține informații referitoare la:

• *operații* (detaliate sumar);

• *resurse generale* (care, fiind utilizate pe tot parcursul servirii, nu sunt afectate de detalierea sumară a operațiilor).

În acest stadiu al construirii modelului, pozițiile asociate operațiilor nu sunt marcate, iar pozițiile asociate resurselor generale sunt marcate cu $m \ge 1$ jetoane. Pentru un anumit tip de resursă generală, marcajul inițial m precizează multiplicitatea resursei generale respective (adică, numărul total de unități fizice ale resursei generale respective care sunt disponibile). Astfel, numărul de clienți aflați în curs de servire, care necesită un același tip de resursă generală, nu poate depăși valoarea m. De aceea, în situația când procesul nu posedă resurse generale ca și *entități fizice*, în modelare se utilizează totuși o poziție de acest tip (chiar dacă nu are un corespondent fizic concret) pentru a putea limita, prin marcajul inițial m, numărul clienților acceptați în sistem pentru diferite etape ale servirii.

În cazurile când nu se poate preciza exact valoarea lui $m \ge 1$, această valoare va fi fixată ulterior, în *sinteza ascendentă*, conform unor criterii ce vor fi prezentate în paragraful următor.

În fig. BT4.2.1.(a) este reprezentat modelul cu o detaliere sumară a operațiilor necesare servirii unui anumit tip de clienți, de-a lungul unei singure linii ce utilizează resursa generală R_g . Facem precizarea că rețeaua Petri ce constituie punctul de plecare al sintezei descendente va conține k modele de factura celui din fig. BT4.2.1.(a) atunci când sistemul conține k linii (fluxuri) de servire, conform reprezentării grafice din fig. BT4.2.1.(b). Clienții serviți de aceste k linii pot fi de tipuri diferite, sau de același tip.

Fig. BT4.2.1. Modelul de la care se începe sinteza ascendentă prin rafinarea operațiilor (a) o singură linie (flux) de servire; (b) k linii (fluxuri) de servire.

BT4.2.1.2. Module standard utilizate în rafinare

Procedeul de rafinare a operațiilor prin sinteză descendentă se bazează pe expandarea unor tranziții sau poziții. În urma unei expandări, o tranziție (poziție) a rețelei inițiale este înlocuită de o subrețea ce posedă un anumit tip de comportare, utilizând așa-numite *blocuri T* (respectiv *P*) corect formate.

Un *bloc T* (tip tranziție) este definit ca fiind o rețea Petri, notată N_T , a cărei topologie conține:

- o *tranziție inițială* (de tip sursă), notată *t_{in}*;
- o *tranziție finală* (de tip receptor), notată t_{fi} .

Pornind de la N_T , se construiește *rețeaua extinsă* asociată blocului T (sau, echivalent, asociată rețelei N_T) notată N_{T_e} , prin adăugarea unei noi poziții, notată p_e , în maniera următoare:

- singura tranziție de ieșire a lui p_e este t_{in} , adică $\{p_e\}^{\bullet} = t_{in}$;
- singura tranziție de intrare a lui p_e este t_{fi} , adică { p_e } = t_{fi} ;
- inițial, poziția p_e poate conține cel mult k jetoane, adică $M_0(p_e) \le k$.

Să notăm prin $L(N_{T_e}, M_0)$ mulțimea tuturor secvențelor de executări din rețeaua N_{T_e} , pornind de la marcajul inițial M_0 . Dată fiind o secvență de executări σ , să notăm prin $\overline{\sigma}(t)$ numărul de executări a tranziției t din această secvență.

Se spune că blocul *T* (sau rețeaua N_T) este un *bloc T de ordin k, corect format în* raport cu tranzițiile t_{in} și t_{fi} , dacă rețeaua extinsă N_{T_e} posedă următoarele proprietăți:

(i) Tranziția t_{in} este viabilă.

(ii) Pentru orice secvență $\sigma_1 \in L(N_{T_a}, M_0)$ în care avem inegalitatea:

$$\overline{\sigma}_1(t_{in}) > \overline{\sigma}_1(t_{fi}),$$

există o secvență σ_2 care nu conține nici o executare a lui t_{in} , astfel încât secvența compusă $(\sigma_1 \sigma_2)$ să aparțină mulțimii de secvențe $L(N_{T_a}, M_0)$ și să avem egalitatea:

$$(\overline{\sigma_1 \sigma_2})(t_{in}) = (\overline{\sigma_1 \sigma_2})(t_{fi}).$$

(iii) Pentru orice secvență $\sigma \in L(N_{T_{\rho}}, M_0)$, avem inegalitatea:

$$\overline{\sigma}(t_{in}) \geq \overline{\sigma}(t_{fi})$$

Cu alte cuvinte, condițiile (i) - (iii) precizează următorul tip de comportare al rețelei N_{T_e} : tranziția t_{in} nu se va bloca niciodată (condiția (i)) și poate devansa (ca număr de executări) pe t_{fi} , iar pentru tranziția t_{fi} va exista întotdeauna o posibilitate de a recupera devansul (ca număr de executări) în raport cu t_{in} .

Modul de operare al rețelei extinse N_{T_e} asociată unui bloc T corect format, face ca un astfel de bloc să poată fi substituit unei tranziții. În acest scop definim noțiunea de *tranziție validabilă de ordin k*. Se spune că o tranziție t dintr-o rețea Petri (N, M_0) este validabilă de ordin k, dacă există un marcaj M, accesibil din M_0 , astfel încât toate pozițiile predecesor ale lui t conțin cel puțin k jetoane, adică $\forall p \in {}^{\bullet}{t}$: $M(p) \ge k$.

În exploatarea tehnicilor de sinteză prin rafinare ce utilizează blocuri *T* corect formate, o importanță deosebită este deținută de modul de conservare a unor proprietăți comportamentale în urma expandării, după cum reiese din următoarea teoremă.

Fig. BT4.2.2. Definiția modulelor standard utilizate în rafinare
(a) Operații secvențiale (a.1 – bloc T, a.2 – bloc P);
(b) Operații paralele (b.1 – bloc T, b.2 – bloc P);

(c) *Operații la alegere, conflictuale* (c.1 – *bloc T,* c.2 – *bloc P*);

(d) Operații la alegere, neconflictuale (d.1 – bloc T, d.2 – bloc P).

Teorema 4.2.1. Fie o rețea Petri (N, M_0) și fie o tranziție t_0 a acestei rețele, care este validabilă de ordin k și nu este validabilă de ordin k+1 pentru marcajul inițial M_0 . Fie N' rețeaua ce rezultă prin substituirea lui t_0 cu rețeaua N_T ce definește un bloc T de ordin k, corect format.

a) Dacă N este mărginită (sigură), atunci N' este mărginită (sigură).

b) Dacă N este viabilă, atunci N' este viabilă.

Prin analogie, se definesc *blocuri P* (tip poziție) corect formate care pot substitui o poziție, păstrând proprietățile de mărginire (siguranță) și viabilitate (similar rezultatului enunțat în **Teorema 4.2.1**).

Adăugarea tuturor *detaliilor* privind operațiile se realizează expandând pozițiile sau tranzițiile cu ajutorul următoarelor *module standard*, reprezentate sub formă de *blocuri T* sau *blocuri P* corect formate, după cum urmează:

- a) *Modul de operații secvențiale* reprezentat în fig. BT4.2.2.(a) (a.1 bloc *T*, a.2 bloc *P*).
- b) Modul de operații paralele reprezentat în fig. BT4.2.2.(b) (b.1 bloc T, b.2 bloc P).
- c) *Modul de operații la alegere, conflictuale*, reprezentat în fig. BT4.2.2.(c) (c.1 bloc *T*, c.2 bloc *P*).
- d) *Modul de operații la alegere, neconflictuale*, reprezentat în fig. BT4.2.2.(d) (d.1 bloc *T*, d.2 bloc *P*). Acest modul diferă de precedentul prin faptul că situațiile conflictuale dintre operațiile la alegere sunt rezolvate de structura de control modelată prin pozițiile $C_1,...,C_n$ și arcele aferente.

Marcajul inițial al tuturor modulelor standard este nul, exceptând o singură poziție din structura de control ce elimină conflictele dintre operațiile la alegere în modulele tip d) (adică, în fig. BT4.2.2.(d.1) și (d.2), poziția notată C_1).

Succesul sintezei descendente prin rafinare, bazată pe aceste module standard, este garantat de următoarea teoremă.

Teorema 4.2.2. Fie o rețea Petri *N*. Fie *N'* rețeaua rezultată prin substituirea unei tranziții (respectiv poziții) a lui *N* cu unul din modulele standard din fig. BT4.2.2, reprezentat sub formă de bloc *T* (respectiv, bloc *P*).

- a) Dacă N este mărginită (sigură), atunci N' este mărginită (sigură).
- b) Dacă N este viabilă, atunci N' este viabilă.
- c) Dacă N este reversibilă, atunci N' este reversibilă.

Prin expandarea repetată, se obține gradul de detaliere dorit pentru modelarea operațiilor. Fiecărei operații îi corespunde o poziție pe așa-numitele *drumuri* sau *căi de operații* a liniilor (fluxurilor) de servire. Aceste căi de operații corespund fluxurilor de servire a tuturor tipurilor de clienți care vizitează sistemul. În plus, rețeaua ce rezultă în finalul sintezei descendente este mărginită (sigură), viabilă și reversibilă, întrucât fiecare pas al rafinării păstrează aceste proprietăți, conform **Teoremei 4.2.2**.

BT4.2.2. Ataşarea resurselor prin sinteză ascendentă

BT4.2.2.1. Prezentarea generală a procedurii de atașare a resurselor

Ca principiu fundamental, sinteza ascendentă permite atașarea resurselor specifice la modelul obținut în urma sintezei descendente (prezentată în paragraful anterior). Prin aplicarea acestui procedeu se păstrează structura construită prin sinteza descendentă (tranziții, poziții nemarcate pentru operații, poziții marcate pentru resurse generale) și se adaugă *numai* poziții marcate (cu arcele aferente) pentru modelarea utilizării resurselor specifice. Rezultatele ce vor fi prezentate mai jos garantează *mărginirea (siguranța), viabilitatea* și *reversibilitatea* rețelei Petri ce constituie modelul final al funcționării sistemului.

Pornind de la modelul tip rețea Petri netemporizată rezultat în urma detalierii operațiilor prin sinteză descendentă, atașarea resurselor se realizează conform următorilor *pași*: *Pas* 1. Atașarea resurselor specifice nepartajate

Pas 2. Atasarea resurselor de stocare

Subpas 2.1. Ataşarea resurselor de stocare nepartajate

Subpas 2.2. Ataşarea resurselor de stocare partajate

Pas 3. Ataşarea resurselor specifice partajate

Subpas 3.1. Ataşarea resurselor specifice partajate paralel

Subpas 3.2. Ataşarea resurselor specifice partajate secvențial

Subpas 3.3. Ataşarea resurselor specifice partajate paralel şi secvențial

În cele ce urmează vom schița fundamentele teoretice pe care se bazează fiecare din acești pași ai sintezei ascendente.

BT4.2.2.2. Detalierea Pasului 1 (atașarea resurselor specifice nepartajate)

Se consideră rețeaua N care include o poziție O, modelând o operație servită de o resursă specifică nepartajată R_n . Modelarea utilizării nepartajate a lui R_n se face printr-o poziție cu marcajul inițial $M_0(R_n) = 1$, conectată la rețeaua N conform fig. BT4.2.3.(a); R_n se alocă la începutul operației care o necesită și se eliberează la sfârșitul acestei operații.

Într-o manieră cu totul similară, resursa specifică nepartajată poate servi o secvență de operații efectuate asupra aceluiași tip de clienți. Modul de atașare a lui R_n în acest caz este ilustrat în fig. BT4.2.3.(b).

Teorema 4.2.3. Fie N' rețeaua rezultată din N prin adăugarea poziției R_n și a arcelor de conexiune, cu $M_0(R_n) = 1$ (conform fig. BT4.2.3.(a) sau (b)).

a) Dacă N este mărginită (sigură), atunci N' este mărginită (sigură).

b) Dacă N este viabilă, atunci N' este viabilă.

c) Dacă N este reversibilă, atunci N' este reversibilă.

Atragem atenția asupra generalității **Teoremei 4.2.3**, care rămâne valabilă și în cazul când una sau mai multe operații din secvența $O_1 \dots O_j$ au deja atașate alte resurse specifice nepartajate. Această atașare prealabilă a altor resurse specifice nepartajate este simbolizată în fig. BT4.2.3.(b) prin arcele trasate cu linie întreruptă, resursele nemaifiind figurate pentru a nu încărca reprezentarea grafică. Un model de această factură este util atunci când efectuarea unei operații necesită două sau mai multe resurse specifice nepartajate.

55

Fig. BT4.2.3. Ilustrarea ataşării la rețeaua N a resursei specifice, nepartajate R_n
(a) R_n serveşte o singură operație O; (b) R_n serveşte o secvență de operații O₁, O₂,..., O_j;
(c) R_n serveşte operația O₂ și este alocată cu anticipare.

Facem precizarea că alocarea lui R_n se poate face și *cu anticipare*, adică înainte ca R_n să fie *efectiv* utilizată. De exemplu, în fig. BT4.2.3.(c), R_n poate fi alocată la începerea operației O_1 , deși ea este utilizată efectiv abia de către operația O_2 . Alocarea cu anticipare a resurselor nepartajate este utilizată numai în anumite situații ce vor fi detaliate și motivate în *Pasul* 3. **Teorema 4.2.3** își păstrează valabilitatea și în cazul alocării cu anticipare a resurselor specifice nepartajate.

La încheierea *Pasului* 1 al sintezei ascendente, toate resursele specifice nepartajate sunt atașate modelului, conservând proprietățile de mărginire (siguranță), viabilitate și reversibilitate.

BT4.2.2.3. Detalierea Pasului 2 (ataşarea resurselor de stocare)

Subpasul 2.1. Ataşarea resurselor de stocare nepartajate

Se consideră rețeaua N care include o poziție, O, modelând așteptarea clienților de un anumit tip într-o resursă de stocare (depozit sau tampon) nepartajată S_n . Modelarea utilizării lui S_n se face printr-o poziție cu marcajul inițial $M_0(S_n) = q$, conectată la rețeaua N conform fig. BT4.2.4.(a). Valoarea $q \ge 2$ reprezintă capacitatea resursei de stocare, adică numărul maxim de clienți ce pot aștepta (cazul q = 1 nu are relevanță practică).

Facem observația (de altfel, firească) că o poziție asociată unei operații de așteptare nu necesită nici o altă resursă în afara resursei de stocare (spre deosebire de pozițiile asociate unor operații de procesare, care pot necesita două sau mai multe resurse).

Ca și în cazul resurselor specifice nepartajate, resursele de stocare nepartajate pot fi alocate cu anticipare.

56

Fig. BT4.2.4. Ilustrarea atașării la rețeaua N a unei resurse de stocare (a) Resursă de stocare nepartajată (S_n) ;

(b) Resursă de stocare partajată (S_p) între clienți de același tip, serviți pe două linii (fluxuri) diferite;
(c) Resursă de stocare partajată (S_p) între clienți de același tip, serviți pe k linii (fluxuri) diferite.

Teorema 4.2.4. Fie N' rețeaua rezultată din N prin adăugarea poziției S_n și a arcelor de conexiune, cu $M_0(S_n) = q \ge 2$ (conform fig. BT4.2.4.(a)).

- a) Dacă N este mărginită, atunci N' este mărginită.
- b) Dacă N este viabilă, atunci N' este viabilă.
- c) Dacă N este reversibilă, atunci N' este reversibilă.

Prin aplicarea repetată a **Teoremei 4.2.4**, la încheierea *Subpasului 2.1* al sintezei ascendente, toate resursele de stocare nepartajate sunt atașate modelului, conservând proprietățile de mărginire, viabilitate și reversibilitate.

Subpasul 2.2. Ataşarea resurselor de stocare partajate

Se consideră rețeaua N care include două poziții, O_1 și O_2 , modelând așteptarea, într-o resursă de stocare partajată S_p , a unor clienți de același tip, serviți pe două linii (fluxuri) diferite. Modelarea utilizării lui S_p se face printr-o poziție cu marcajul inițial $M_0(S_p)=q\ge 2$ conectată la rețeaua N conform fig. BT4.2.4.(b); valoarea q reprezintă capacitatea resursei de stocare, adică numărul maxim de clienți ce pot aștepta.

Atragem atenția asupra faptului că într-o resursă de stocare partajată pot aștepta clienți de același tip, serviți pe mai multe linii (fluxuri) diferite, reprezentarea grafică a acestei situații constituind o generalizare firească a ilustrării din fig. BT4.2.4.(b). În această situație generală, reprezentată grafic în fig. BT4.2.4.(c) pentru clienți serviți pe k linii (fluxuri) diferite, funcționează următoarea teoremă.

Teorema 4.2.5. Fie *N'* rețeaua rezultată din *N* prin adăugarea poziției S_p și a arcelor de conexiune, cu $M_0(S_p) = q$ (conform fig. BT4.2.4.(c)).

- a) Dacă N este mărginită, atunci N' este mărginită.
- b) Dacă N este viabilă, atunci N' este viabilă.
- c) Dacă N este reversibilă, atunci N' este reversibilă.

Prin aplicarea repetată a **Teoremei 4.2.5**, la încheierea *Subpasului 2.2* al sintezei ascendente, toate resursele de stocare partajate (între două sau mai multe linii de servire) sunt atașate modelului, conservând proprietățile de mărginire, viabilitate și reversibilitate.

BT4.2.2.4. Detalierea Pasului 3 (atașarea resurselor specifice partajate)

Subpasul 3.1. Ataşarea resurselor specifice partajate paralel

Se consideră rețeaua N care include două poziții O_1 și O_2 , modelând desfășurarea în paralel a două operații ce necesită o aceeași resursă specifică, partajată paralel, R_{pp} . Modelarea utilizării partajate a lui R_{pp} se face printr-o poziție cu marcajul inițial $M_0(R_{pp})=1$, conectată la rețeaua N conform fig. BT4.2.5.(a).

Într-o manieră cu totul similară, resursa specifică partajată poate fi utilizată de către două grupuri de operații desfășurate în paralel, modelate prin două subrețele N_1 , N_2 din N. Modul de atașare a lui R_{pp} în acest caz este ilustrat în fig. BT4.2.5.(b).

Rețeaua N include toate pozițiile de tip resursă (R_n , S_n , S_p) atașate în *Pasul* 1 și *Pasul* 2 al sintezei ascendente, deci și pe cele ce servesc operațiile din subrețelele N_1 și N_2 . Acest fapt este ilustrat generic în fig. BT4.2.5.(b) prin arcele trasate cu linie întreruptă.

Utilizarea corectă a lui R_{pp} necesită realizarea unei *structuri de excludere mutuală* paralelă, caracterizată prin:

- Ambele operații (grupuri de operații) desfășurate în paralel au drepturi egale de a aloca R_{pp}.
- După alocarea lui *R_{pp}* la una din cele două operații (la unul din cele două grupuri de operații), operația (grupul de operații) se desfășoară efectiv, permițând, în final, eliberarea lui *R_{pp}*.

Cu alte cuvinte, nu se fac alocări ale lui R_{pp} care nu pot garanta și eliberarea ei, datorită nedisponibilității altor resurse necesare desfășurării operației (grupului de operații) în cauză. Aceste caracteristici ale excluderii mutuale paralele (comentate anterior sub raport intuitiv) pot fi formalizate matematic prin următoarea definiție.

Se spune că poziția R_{pp} , împreună cu perechile de tranziții $\{(t_{a1}, t_{b1}), (t_{a2}, t_{b2})\}$ existente în N (unde $R_{pp}^{\bullet} = \{t_{a1}, t_{a2}\}$ și $\cdot R_{pp} = \{t_{b1}, t_{b2}\}$, vezi fig. BT4.2.5.(b)) formează o excludere mutuală paralelă, dacă sunt îndeplinite următoarele condiții:

- 1° Orice drum elementar dintre t_{ai} și o poziție asociată unei resurse generale trebuie să conțină t_{bi} (*i*= 1,2);
- 2° Orice circuit elementar ce conține t_{ai} și R_{pp} trebuie să conțină t_{bi} (*i*= 1,2);
- 3° Fiecare tranziție de pe orice drum elementar dintre t_{ai} și t_{bi} trebuie să aparțină și unui drum elementar de operații (ce conține numai poziții asociate operațiilor), unind t_{ai} cu t_{bi} (*i*= 1,2);
- 4° Oricare ar fi marcajul M(N) care validează t_{ai} , dacă t_{ai} se execută, atunci există o secvență de executări de tranziții din N_i care conduce la executarea lui t_{bi} (*i*= 1,2).

58 -

Fig. BT4.2.5. Ilustrarea ataşării la rețeaua N a resursei specifice partajate paralel R_{pp} (a) R_{pp} este utilizată de 2 operații (modelate prin O₁ şi O₂);
(b) R_{pp} este utilizată de 2 grupuri de operații (modelate prin subrețelele N₁ şi N₂);
(c) R_{pp} este utilizată de k grupuri de operații (modelate prin subrețelele N₁, N₂,..., N_k).

Evident condițiile de mai sus pot fi imediat generalizate pentru un număr arbitrar $k \ge 2$ de subrețele $N_1, ..., N_k$ modelând k operații (grupuri de operații) desfășurate în paralel, ce necesită o aceeași resursă specifică, partajată paralel, R_{pp} , conform fig. BT4.2.5.(c). În această situație, condițiile 1° – 4° ce definesc excluderea mutuală paralelă se vor referi la o mulțime de k perechi de tranziții existente în N { $(t_{a1}, t_{b1}), ..., (t_{ak}, t_{bk})$ }, unde $R_{pp}^{\bullet} = {t_{a1}, ..., t_{ak}}$ și ${}^{\bullet}R_{pp} = {t_{b1}, ..., t_{bk}}$, adică precizarea i= 1, 2 se înlocuiește prin i= 1, 2, ..., k.

Teorema 4.2.6. Fie *N'* rețeaua ce rezultă din *N* prin adăugarea poziției R_{pp} și a arcelor de conexiune, cu $M_0(R_{pp})=1$ (conform fig. BT4.2.5.(c)), astfel încât R_{pp} împreună cu perechile de tranziții { $(t_{a1}, t_{b1}),..., (t_{ak}, t_{bk})$ } formează o excludere mutuală paralelă.

a) Dacă N este mărginită (sigură), atunci și N' este mărginită (sigură).

b) Dacă N este viabilă, atunci și N' este viabilă.

c) Dacă N este reversibilă, atunci și N' este reversibilă.

Atragem atenția asupra generalității **Teoremei 4.2.6** care rămâne valabilă și în cazul când una sau mai multe operații din subrețelele $N_1, ..., N_k$ au deja atașate alte resurse specifice cu utilizare partajată paralelă. În această situație, însă, satisfacerea condiției 4° din definirea excluderii mutuale secvențiale trebuie verificată cu deosebită atenție atunci când sunt atașate toate resursele specifice partajate paralel, ale căror utilizări interferă pentru una sau mai multe operații.

Prin aplicarea repetată a **Teoremei 4.2.6**, la încheierea *Subpasului* 3.1 al sintezei ascendente, toate resursele specifice, partajate paralel, sunt atașate modelului, conservând proprietățile de mărginire (siguranță), viabilitate și reversibilitate.

Subpasul 3.2. Ataşarea resurselor specifice partajate secvențial

Se consideră rețeaua N care include două operații desfășurate secvențial, ce necesită o aceeași resursă specifică, partajată secvențial, R_{ps} . Modelarea utilizării partajate a lui R_{ps} se face printr-o poziție cu marcajul inițial $M_0(R_{ps})=1$, conectată la rețeaua N conform fig. BT4.2.6.(a). Într-o manieră cu totul similară, resursa specifică partajată poate fi utilizată de către două grupuri de operații desfășurate secvențial, modelate prin două subrețele N_1 , N_2 din N. Modul de atașare a lui R_{ps} în acest caz este ilustrat în fig. BT4.2.6.(b). Subrețeaua N include toate pozițiile de tip resursă (R_n , S_n , S_p , R_{pp}) atașate în *Pasul* 1, *Pasul* 2 și *Subpasul* 3.1 al sintezei ascendente, deci și pe cele care servesc operațiile din subrețelele N_1 și N_2 . Acest fapt este ilustrat generic în fig. BT4.2.6.(b) prin arcele trasate cu linie întreruptă.

Fig. BT4.2.6. Ilustrarea atașării la rețeaua N a resursei specifice partajate secvențial R_{ps} (a) R_{ps} este utilizată de 2 operații (modelate prin O_1 și O_2);

(b) R_{ps} este utilizată de 2 grupuri de operații (modelate prin subrețelele N_1 și N_2);

(c) R_{ps} este utilizată de j grupuri de operații (modelate prin subrețelele $N_1, N_2, ..., N_j$).

Utilizarea corectă a lui R_{ps} necesită realizarea unei *structuri de excludere mutuală* secvențială, caracterizată prin:

- Pentru un același client, operațiile din N_1 se desfășoară înaintea operațiilor din N_2 .
- După alocarea lui R_{ps} la una din cele două operații (grupuri de operații) desfășurate secvențial, operația (grupul de operații) se desfășoară efectiv și eliberează R_{ns} .

Aceste caracteristici ale excluderii mutuale secvențiale (comentate anterior sub raport intuitiv) pot fi formalizate matematic prin următoarea definiție.

Se spune că poziția R_{ps} , împreună cu perechile de tranziții $\{(t_{a1}, t_{b1}), (t_{a2}, t_{b2})\}$ existente în N (unde $R_{ps} \bullet = \{t_{a1}, t_{a2}\}$ și $\bullet R_{ps} = \{t_{b1}, t_{b2}\}$, conform fig. BT4.2.6.(b)) formează o excludere mutuală secvențială, dacă sunt îndeplinite următoarele condiții:

- 1° Orice drum elementar dintre t_{ai} și o poziție asociată unei resurse generale trebuie să conțină și t_{bi} (*i*= 1,2).
- 2° Orice circuit elementar ce conține t_{ai} și R_{ps} trebuie să conțină t_{bi} (*i*= 1,2).
- 3° Fiecare tranziție de pe orice drum elementar dintre t_{ai} și t_{bi} trebuie să aparțină și unui drum elementar de operații (ce conține numai poziții asociate operațiilor), unind t_{ai} cu t_{bi} (*i*= 1,2).
- 4° Pentru orice tranziție $t \in N_2$, există o tranziție $t' \in N_1$, astfel încât între t' și t există un drum elementar de operații.
- 5° Nu există nici un drum elementar de operații de la N_2 la N_1 .
- 6° Oricare ar fi marcajul M(N) care validează t_{ai} , dacă t_{ai} se execută, atunci există o secvență de executări de tranziții din N_i care conduce la executarea lui t_{bi} (*i*= 1,2).

Satisfacerea condițiilor $1^{\circ} - 5^{\circ}$ se asigură printr-o topologie adecvată. În schimb, pentru îndeplinirea condiției 6° trebuie luat în considerare și marcajul.

Satisfacerea condiției 6° se poate asigura prin următoarele *două metode*:

Metoda 1 – limitarea numărului total de clienți (de același tip) admiși în sistem;

Metoda 2 – limitarea numărului de clienți (de același tip) admiși pentru servire cu operațiile ce se desfășoară între utilizările resursei partajate secvențial.

Detaliem, pe scurt, fiecare din cele două metode care sunt deopotrivă utilizate în practica proiectării.

Metoda 1 (*detaliere*)

Numărul de clienți (de același tip) admiși în sistem este *limitat*, astfel încât, indiferent de etapele de servire în care se află fiecare client, resursa partajată să poată fi utilizată și eliberată după utilizare. Limitarea se realizează prin fixarea *valorii maxime* a marcajului inițial din poziția corespunzătoare resursei generale.

Suportul matematic utilizat pentru determinarea acestei valori maxime îl constituie conceptul de *capacitate de jetoane*. Utilizând notațiile din fig. BT4.2.6.(b), numim *capacitate de jetoane* între tranzițiile t_{b1} și t_{a2} , notată prin $C(t_{b1}, t_{a2})$, numărul maxim de executări posibile ale lui t_{b1} , fără ca t_{a2} să se execute. Limitarea *marcajului inițial al resursei generale* (ce servește atât N_1 cât și N_2) la valoarea $C(t_{b1}, t_{a2})$ asigură satisfacerea condiției 6° (resursa generală nu este reprezentată în fig. BT4.2.6.(b)).

Justificarea acestei limitări este imediată, ținând cont de faptul că $C(t_{b1}, t_{a2})$ reprezintă numărul maxim de jetoane (adică clienți) care pot părăsi subrețeaua N_1 (prin t_{b1}) fără a ajunge în subrețeaua N_2 (prin t_{a2}). Deci, limitând numărul total de clienți admiși în sistem la valoarea $C(t_{b1}, t_{a2})$, în cazul cel mai nefavorabil de operare (adică pentru secvența de executări de tranziții cea mai nefavorabilă din punctul de vedere al condiției 6°), toți clienții sunt serviți numai cu operații corespunzătoare pozițiilor dintre t_{b1} și t_{a2} . Astfel R_{ps} va fi în mod obligatoriu utilizată de N_2 , întrucât nu mai sunt clienți în sistem care să necesite R_{ps} pentru N_1 . Resursa partajată secvențial R_{ps} va fi solicitată de N_1 numai după ce clientul cu stadiul cel mai avansat de servire va părăsi sistemul (deci implicit subrețeaua N_2) și va elibera o unitate a resursei generale, astfel încât să poată fi acceptat un nou client în sistem.

Metoda 2 (detaliere)

62

Numărul de clienți admiși pentru operațiile modelate prin pozițiile dintre t_{a1} și t_{a2} este *limitat* la valoarea $C(t_{b1}, t_{a2})$, fără a limita numărul total de clienți (de același tip) admiși în sistem. Astfel, nu se mai impune nici o restricție asupra marcajului resursei generale. În această situație, cazul cel mai nefavorabil este analog celui semnalat anterior la *Metoda* 1, când toți cei $C(t_{b1}, t_{a2})$ clienți sunt serviți numai cu operații corespunzătoare pozițiilor dintre t_{b1} și t_{a2} . Deci R_{ps} va fi în mod obligatoriu utilizată de N_2 , întrucât în N_1 nu mai pot intra clienți.

Resursa partajată secvențial R_{ps} va fi solicitată de N_1 numai după ce clientul cu stadiul cel mai avansat de servire dintre t_{b1} și t_{a2} va ajunge în N_2 . Dar intrarea acestui client în N_2 înseamnă că R_{ps} este deja alocată lui N_2 (deci indisponibilă pentru solicitarea lui N_1), așadar alocarea lui R_{ps} la N_1 va fi posibilă numai după ce R_{ps} va fi eliberată de N_2 . Cu alte cuvinte executarea lui t_{a2} va fi urmată de o secvență de executări în N_2 care conduce la executarea lui t_{b2} , condiția 6° fiind astfel satisfăcută.

Metoda 2 de satisfacere a condiției 6° poate fi realizată în mai multe *variante*, dintre care menționăm:

- *Varianta 1.* Utilizarea unei structuri de control, denumită *kanban*, care să monitorizeze numărul de clienți acceptați pentru toate operațiile dintre t_{a1} și t_{a2} și să-l limiteze la valoarea $C(t_{b1}, t_{a1})$. (Termenul *kanban* este de origine japoneză și are semnificația de "etichetă" sau "permis" pentru accesul unui client într-un modul al sistemului.)
- *Varianta 2.* Alocarea *cu anticipare* în t_{a1} a resursei necesitate de prima operație de după t_{b1} . (Alocarea fără anticipare a acestei resurse s-ar face în t_{b1}).

Evident, condițiile de mai sus pot fi imediat generalizate pentru un număr arbitrar $j \ge 2$ de subrețele $N_1, ..., N_j$ modelând *j* operații (grupuri de operații) desfășurate secvențial, ce necesită o aceeași resursă specifică, partajată secvențial, R_{ps} , conform fig. BT4.2.6.(c). În această situație condițiile 1°, 2°, 3°, 6° ce definesc excluderea mutuală secvențială se vor referi la o mulțime de perechi de tranziții existente în $N \{(t_{a1}, t_{b1}), ..., (t_{aj}, t_{bj})\}$, unde $R_{ps} \cdot = \{t_{a1}, ..., t_{aj}\}$ și $\cdot R_{ps} = \{t_{b1}, ..., t_{bj}\}$, adică precizarea i=1,2 se înlocuiește prin i=1,2,...,j. Pentru maximă claritate formulăm și generalizarea condițiilor 4°, 5° în cazul celor *j* subrețele $N_1, ..., N_j$.

Generalizarea condiției 4°. Pentru orice tranziție $t \in N_{i+1}$, i=1,..., j-1, există o tranziție $t' \in N_i$, astfel încât între t' și t există un drum elementar de operații.

Generalizarea condiției 5°. Nu există nici un drum elementar de operații de la N_{i+1} la N_i , i=1,...,j-1.

De asemenea se generalizează, cu ușurință, cele două metode prezentate anterior pentru satisfacerea condiției 6° din definiția excluderii mutuale secvențiale.

Generalizarea Metodei 1 revine la limitarea numărului total de clienți (de același tip), admiși în sistem, la valoarea $\min_{i=1,\dots,j-1} C(t_{bi}, t_{ai+1})$.

Generalizarea Metodei 2 revine la limitarea numărului de clienți admiși pentru operațiile desfășurate între t_{ai} și t_{ai+1} (adică între două utilizări consecutive ale resursei partajate secvențial R_{ns}) la valoarea $C(t_{hi}, t_{ai+1})$, pentru fiecare i=1,...,j-1.

Teorema 4.2.7. Fie *N'* rețeaua ce rezultă din *N* prin adăugarea poziției R_{ps} și a arcelor de conexiune, cu $M_0(R_{ps})=1$ (conform fig. BT4.2.6.(c)), astfel încât R_{ps} împreună cu perechile de tranziții { $(t_{a1}, t_{b1}),..., (t_{ai}, t_{bi})$ } formează o excludere mutuală secvențială.

a) Dacă N este mărginită (sigură), atunci și N' este mărginită (sigură).

b) Dacă N este viabilă, atunci și N' este viabilă.

c) Dacă N este reversibilă, atunci și N' este reversibilă.

Atragem atenția asupra faptului că **Teorema 4.2.7** rămâne valabilă și în cazul când una sau mai multe operații din subrețelele $N_1,..., N_j$ au deja atașate alte resurse specifice cu utilizare partajată secvențială. În această situație, însă, satisfacerea condiției 6° din definiția excluderii mutuale secvențiale trebuie verificată atunci când sunt atașate toate resursele specifice partajate secvențial, ale căror utilizări interferă pentru una sau mai multe operații.

Prin aplicarea repetată a **Teoremei 4.2.7**, la încheierea *Subpasului* 3.2 al sintezei ascendente, toate resursele specifice, partajate secvențial, sunt atașate modelului, conservând proprietățile de mărginire (siguranță), viabilitate și reversibilitate.

Subpasul 3.3. Ataşarea resurselor specifice partajate paralel şi secvențial

Se consideră rețeaua N care include trei poziții O_1 , O_2 și O_3 modelând trei operații, dintre care O_1 , O_2 se desfășoară secvențial, dar ambele în paralel cu O_3 , partajând resursa specifică R_{pg} . Resursa R_{pg} este *partajată generalizat*, adică, pe de o parte, *secvențial* de către O_1 și O_2 , iar pe de altă parte, *paralel* de O_3 , în raport cu O_1 și O_2 . Modelarea utilizării partajate a lui R_{pg} se face printr-o poziție cu marcajul inițial $M_0(R_{pg})=1$, conectată la rețeaua N conform fig. BT4.2.7.(a). Într-o manieră cu totul similară, resursa specifică partajată R_{pg} poate fi utilizată de către trei grupuri de operații, dintre care două se desfășoară secvențial (modelate prin subrețelele N_1 , N_2 din N), dar în paralel cu al treilea grup (modelat prin subrețeaua N_3 din N). Modul de atașare a lui R_{pg} în acest caz este ilustrat în fig. BT4.2.7.(b). Subrețeaua N include toate pozițiile de tip resursă (R_n , S_n , S_p , R_{pp} , R_{ps}) atașate în *Pasul* 1, *Pasul* 2, *Subpasul* 3.1 și *Subpasul* 3.2 al sintezei ascendente, deci și pe cele ce servesc operațiile din subrețelele N_1 , N_2 și N_3 . Acest fapt este ilustrat generic în fig. BT4.2.7.(b) prin arcele trasate cu linie întreruptă. 64

Se presupune că poziția R_{pg} împreună cu perechile de tranziții { (t_{a1}, t_{b1}) , (t_{a2}, t_{b2}) , (t_{a3}, t_{b3}) } existente în N (unde $R_{pg} \bullet = \{t_{a1}, t_{a2}, t_{a3}\}$ și $\bullet R_{pg} = \{t_{b1}, t_{b2}, t_{b3}\}$, conform fig. BT4.2.7.(b)) formează o *excludere mutuală generalizată*, dacă sunt îndeplinite următoarele condiții:

- 1° Structurile R_{pg} împreună cu { $(t_{a1}, t_{b1}), (t_{a3}, t_{b3})$ } și R_{pg} împreună cu { $(t_{a2}, t_{b2}), (t_{a3}, t_{b3})$ } sunt excluderi mutuale paralele.
- 2° Structura R_{pg} împreună cu { $(t_{a1}, t_{b1}), (t_{a3}, t_{b3})$ } este o excludere mutuală secvențială.

Fig. BT4.2.7. Ilustrarea ataşării la rețeaua N a resursei specifice partajate generalizat R_{pg} (a) R_{pg} este utilizată de 3 operații (modelate prin O₁, O₂ şi O₃);
(b) R_{pg} este utilizată de 3 grupuri de operații (modelate prin N₁, N₂ şi N₃);

(c) R_{pg} este utilizată de j_1 +...+ j_k grupuri de operații (modelate prin N_{11} ,..., N_{1j_1} ;...; N_{k1} ... N_{kj_k}).

Condițiile de mai sus pot fi imediat extinse pentru un număr arbitrar de subrețele, care partajează generalizat o resursă specifică R_{pg} , conform fig. BT4.2.7.(c), unde excluderea mutuală secvențială se realizează între subrețele situate de-a lungul fiecăreia din cele k căi (drumuri, fluxuri) de operații, iar excluderea mutuală paralelă se realizează între subrețele situate pe căi diferite. Nu vom dezvolta o formulare matematică riguroasă pentru acest caz extins, datorită complexității descrierii, dar considerăm că reprezentarea grafică din fig. BT4.2.7.(c) constituie un suport intuitiv suficient pentru a înțelege specificul excluderii mutuale generalizate.

Teorema 4.2.8. Fie *N'* rețeaua ce rezultă din *N* prin adăugarea poziției R_{pg} și a arcelor de conexiune, cu $M_0(R_{pg}) = 1$ (conform fig. BT4.2.7.(c)), astfel încât R_{pg} împreună cu perechile de tranziții { $(t_{a_11}, t_{b_11}),..., (t_{a_1j_1}, t_{b_1j_1});...; (t_{a_k1}, t_{b_k1}),..., (t_{a_kj_k}, t_{b_kj_k})$ } formează o excludere mutuală generalizată.

a) Dacă N este mărginită (sigură), atunci și N' este mărginită (sigură).

b) Dacă *N* este viabilă, atunci și *N'* este viabilă.

c) Dacă N este reversibilă, atunci și N' este reversibilă.

Precizăm faptul că **Teorema 4.2.8** rămâne valabilă și în cazul când una sau mai multe operații din subrețelele $N_{11},..., N_{lj_1};..., N_{kj_k}$ au deja atașate alte resurse specifice partajate generalizat, pentru care a fost asigurată excluderea mutuală generalizată.

Prin aplicarea repetată a **Teoremei 4.2.8**, la încheierea *Subpasului* 3.2 al sintezei ascendente, toate resursele specifice, partajate generalizat sunt atașate modelului, conservând proprietățile de mărginire (siguranță), viabilitate și reversibilitate.

Încheiem această secțiune dedicată sintezei hibride subliniind faptul că, deși detalierea operațiilor și atașarea resurselor se realizează în două etape distincte, proiectantul trebuie să aibă în vedere *corelarea lor pe tot parcursul sintezei*, pentru a evita introducerea unor erori de modelare.

BT4.3. Proprietăți caracteristice ale structurilor de conducere rezultate din sinteză

Modelul de tip rețea Petri al structurii de conducere capabil să descrie *atât dinamica operațiilor cât și a resurselor* prezintă următoarele caracteristici topologice și de marcaj.

- Pozițiile corespunzătoare fiecărei succesiuni distincte de operații (linie sau flux de operații) sunt secvențiate de-a lungul unei căi (drum) de operații, asociate succesiunii respective. În cazul când există alegeri, concurențe sau sincronizări între operații, într- o cale de operații pot apărea mai multe subcăi de operații.
- Tranzițiile sunt situate *numai* pe căile de operații și, eventual pe subcăile acestora, marcând sfârșitul unei operații și începutul celei ce urmează, în conformitate cu succesiunile de servicii ce trebuie prestate clienților.
- Pozițiile corespunzătoare resurselor se conectează la tranzițiile de pe căile și subcăile de operații *fără a introduce* tranziții suplimentare.

- În absența unor solicitări anume, o resursă *specifică* se alocă la începutul operației pe care o deservește și se eliberează la sfârșitul operației respective (alocare fără anticipare).
- În absența altor precizări, o resursă *generală* se alocă la începutul servirii unui client și se eliberează după servirea completă a clientului.
- Marcajul inițial lasă vide toate pozițiile corespunzătoare *operațiilor* și plasează jetoane numai în pozițiile corespunzătoare *resurselor*.

BT4.4. Funcțiuni de bază și considerații de proiectare ale controlerului procedural

BT4.4.1. Funcțiuni de bază

66

Controlerul secvențial rezultă *direct din rețeaua Petri a structurii de conducere* (proces + controler) obținută prin aplicarea procedurii de sinteză:

- Pozițiile acestei rețele modelează starea operațiilor și resurselor procesului condus.
- Conexiunile pozițiilor la tranziții *definesc controlerul secvențial printr-un set de reguli*, fiecărei tranziții corespunzându-i o regulă de forma IF *precondiții* THEN *postcondiții*.

Setul de reguli IF THEN ce alcătuiesc controlerul permite *conducerea procesului în conformitate cu dinamica rețelei rezultate prin sinteză*. Cu alte cuvinte, controlerul asigură fizic *funcționarea mecanismului de validare și executare a tranzițiilor*, discutat din punct de vedere teoretic în paragraful BT2.3 din capitolul 2. Implementarea setului de reguli IF THEN ale controlerului se poate realiza hard sau soft. Astfel, rețeaua Petri rezultată din sinteză poate fi privită prin prisma schemei bloc din fig. BT4.1.1, concluzionând faptul că blocul "Proces de servire" conține toate pozițiile rețelei, iar blocul "Controler" conține toate tranzițiile. Acest mod de înțelegere al structurilor de conducere a proceselor cu evenimente discrete corespunde punctului de vedere standard din automatică, conform căruia obiectul condus (ca entitate fizică a cărei dinamică trebuie controlată) este separat față de controler (ca mecanism ce implementează principiile de conducere, pe baza informațiilor primite de la obiectul condus).

BT4.4.2. Considerații de proiectare

Proiectarea unui controler, care să asigure îndeplinirea, de către structura de conducere, a condițiilor (C1) – (C4) precizate în paragraful BT4.1 al acestui capitol, se desfășoară în două etape:

- Etapa 1: Utilizând *drept date de proiectare* informațiile despre *disponibilul de resurse* și modul cum acestea pot fi utilizate pentru realizarea *succesiunilor de operații* solicitate de toți clienții, se elaborează *un model tip rețea Petri al structurii de conducere*, prin aplicarea uneia dintre tehnicile de sinteză prezentate în secțiunile anterioare ale acestui capitol.
- Etapa 2: Folosind rețeaua Petri rezultată din Etapa 1, se construiește setul de reguli al controlerului, asociind fiecărei tranziții o *regulă* de forma:

IF (operația curentă este completă

and resursele pentru operația următoare sunt disponibile)

THEN (eliberează resursele folosite de operația curentă

and alocă noile resurse necesare and începe operația următoare).

În aplicațiile uzuale de conducere a proceselor pilotate de evenimente, satisfacerea condițiilor (C1) – (C4) necesitate de funcționarea corectă a structurii de conducere revine la sintetizarea, în Etapa 1, a unei rețele Petri ce prezintă următoarele proprietăți:

- viabilitate are semnificația începerii și sfârșirii tuturor operațiilor, atâta vreme cât există clienți care trebuie serviți;
- *mărginire* are semnificația nedepășirii capacităților de operare a resurselor;
- *reversibilitate* are semnificația repetabilității serviciilor prestate pentru toți clienții de același tip sosiți în sistem.

Se constată, așadar, că manipularea eficientă a tehnicilor de sinteză reprezintă o condiție fundamentală pentru construirea setului de reguli ale controlerului secvențial. În plus, proprietățile comportamentale și structurale ale rețelei Petri rezultate din sinteză, trebuie probate prin tehnici de analiză adecvate, astfel încât dinamica structurii de conducere să fie cunoscută într-o manieră cât se poate de completă. Din acest motiv, în Etapa 1 de proiectare a controlerului, proiectantul trebuie să facă uz de întreaga sa experiență în utilizarea formalismului rețelelor Petri (sinteză și analiză). În cazul rețelelor cu o topologie relativ complexă, simularea și analiza asistată de calculator reprezintă un instrument indispensabil unei investigații detaliate.

Atragem atenția asupra următorului fapt important. Strategia de proiectare *în două etape* a controlerului coincide, ca mod de organizare, cu filosofia tipică din cazul sistemelor pilotate de timp, care, de asemenea, cuprinde două faze:

- Faza 1 Propunerea unui model (în circuit închis) pentru structura de conducere (proces + controler) care să asigure dinamica dorită pentru proces.
- Faza 2 Utilizând modelul în circuit închis, construit în Faza 1 și cunoștințele despre funcționarea procesului, se formulează principiile de operare ale controlerului.

Deosebirea fundamentală constă în aceea că, pentru sistemele cu evenimente discrete, cerințele impuse mai sus funcționării structurii de conducere sunt de factură logică, iar proiectarea se bazează pe o abordare calitativă, în timp ce pentru sistemele pilotate de timp, se impun, uzual, și performanțe temporale, proiectarea necesitând, astfel, și o abordare cantitativă.

Aplicații

AP4.1.

Se dorește sintetizarea unei structuri de conducere pentru un sistem de calcul biprocesor cu reprezentarea schematică din fig. AP3.5.1 și principiile de funcționare prezentate în **AP3.5**. Se urmărește construirea unui model tip rețea Petri netemporizată cu proprietățile de siguranță, viabilitate și reversibilitate.

67

- 1. Să se aplice algoritmul de sinteză hibridă. Pentru fiecare pas al algoritmului se va prezenta rețeaua Petri precizând semnificația fiecărei poziții nou introduse în raport cu pasul precedent.
- 2. Să se verifice prin simulare în mediul *Petri Net Toolbox*, pentru 10.000 de evenimente, funcționarea corectă a structurii de conducere și să se determine:
 - i) numărul de fișiere create inițial pe D_1 și copiate pe D_2 ;
 - ii) numărul de fișiere create inițial pe D_2 și copiate ulterior pe D_1 .

<u>Soluție</u>

1. Modelul de tip rețea Petri corespunzător succesiunilor de operații, rezultat prin rafinare descendentă, este prezentat în fig. AP4.1.1. Există două *căi de operații* (corespunzătoare fiecăruia din cele două tipuri de taskuri) la care se conectează cele două resurse generale (și anume procesoarele).

Fig. AP4.1.1. Modelarea operațiilor în etapa de sinteză descendentă.

Acestui model i se atașează resursele prin sinteză ascendentă.

Pasul 1. În sistem nu există resurse specifice nepartajate astfel că trecem la pasul următor.

Pasul 2. Deoarece sistemul de calcul nu conține resurse de stocare, se trece la pasul următor.

Pasul 3. Ataşăm resursele specifice partajate.

Subpasul 3.1. Ataşăm resursele partajate paralel.

Introducem resursele partajate paralel D_1 și D_2 . Deoarece prin includerea acestor resurse în model se poate pierde proprietatea de viabilitate a rețelei (vezi aplicația **AP3.3**), vom asigura excluderea mutuală paralelă, alocând cu anticipare discul D_2 la începerea unui task ST₁. Structura rezultată (fig. AP4.1.2) posedă proprietățile de viabilitate, mărginire și reversibilitate.

Resursele necesare sistemului de calcul fiind introduse în totalitate, nu mai este cazul executării *Subpaşilor 3.2* și *3.3*, modelul obținut după aplicarea *Subpasului 3.1* fiind modelul final.

Fig. AP4.1.2. Modelul rezultat în urma aplicării algoritmului de sinteză hibridă

2. Utilizând modul de simulare *Run Fast*, pentru 10.000 de evenimente se obțin indicatorii globali de performanță prezentați în fig. AP4.1.3. Numărul de fișiere create inițial pe D_1 și copiate pe D_2 corespunde indicatorului *Service Sum* pentru tranziția t_3 , și anume 1672, iar numărul de fișiere create inițial pe D_2 și copiate ulterior pe D_1 corespunde aceluiași indicator pentru tranziția t_6 , având valoarea 1661. Cititorul este invitat să formuleze o soluție bazată pe consultarea indicatorilor globali de performanță referitori la pozițiile din rețea.

8	🖉 Petri Net Toolbox - Web Browser						
	Global Statistics: Transitions						
M	Model:cap4pr1_pas2.xml						
E	Events :10000						
Ti	i me :0						
	Transition Name	Service Sum	Service Rate	Service Dist.	Service Time	Utilization	
	t1	1673	0	0	0	0	
	t2	1672	0	0	0	0	
	t3	1672	0	0	0	0	
	t4	1661	0	0	0	0	
	t5	1661	0	0	0	0	
	t6	1661	0	0	0	0	
	Ok Save						

Fig. AP4.1.3. Indicatorii globali de performanță obținuți în urma simulării în mediul *Petri Net Toolbox* pentru un număr de 10.000 evenimente.

69

AP4.2.

Se dorește sintetizarea unei structuri de conducere pentru un sistem de fabricație cu reprezentarea schematică din fig. AP3.6.1 și principiile de funcționare prezentate în **AP3.6**. Se urmărește construirea unui model tip rețea Petri netemporizată cu proprietățile de mărginire, viabilitate și reversibilitate.

- 1. Să se aplice algoritmul de sinteză hibridă pentru următoarele două situații:
 - (i) Nici o resursă nu se alocă înainte de a se începe operația care necesită resursa respectivă, iar numărul de palete x este stabilit la valoarea maximă care permite îndeplinirea condițiilor (C1) (C4) impuse funcționării structurii de conducere.
 - (ii) Resursele pot fi alocate și cu anticipare (înainte de a se începe operația care le necesită efectiv), iar numărul de palete este x = 4.

Pentru fiecare pas al algoritmului se va prezenta rețeaua Petri precizând semnificația fiecărei poziții nou introduse în raport cu pasul precedent

2. Să se verifice prin simulare în mediul *Petri Net Toolbox*, pentru 10.000 de evenimente, funcționarea corectă a celor două structuri de conducere construite la punctul 1 și să se determine numărul total de piese prelucrate în fiecare din aceste cazuri.

<u>Soluție</u>

1. Succesiunea de operații solicitată de clienți (piese) precum și resursa generală (care în cazul de față este reprezentată de palete) modelată prin poziția P, este prezentată în fig. AP4.2.1. Rețeaua Petri, rezultată prin rafinare descendentă, posedă proprietățile de viabilitate, mărginire și reversibilitate.

Fig. AP4.2.1. Modelul rezultat după etapa descendentă a sintezei hibride.

Acestui model i se atașează resursele prin sinteză ascendentă.

Pasul 1: Atașăm resursele specifice nepartajate: mașina M_1 (modelată prin poziția M1) și mașina M_2 (modelată prin poziția M2). Rețeaua obținută în urma pasului 1 al sintezei ascendente este reprezentată în fig. AP.4.2.2.

Pasul 2: Ataşăm resursele de stocare.

Subpasul 2.1. Ataşăm resursa de stocare nepartajată D (modelată prin poziția D) rezultând rețeaua Petri din fig. AP4.2.3.

Subpasul 2.2. Nu există resurse de stocare partajate.

Fig. AP4.2.2. Modelul rezultat după aplicarea Pasului 1 al etapei de sinteză ascendentă.

Fig. AP4.2.3. Modelul rezultat după aplicarea Pasului 2 al etapei de sinteză ascendentă.

Pasul 3: Ataşăm resursele specifice partajate.

Subpasul 3.1. Nu există resurse specifice partajate paralel.

Subpasul 3.2. Ataşăm resursa partajată secvențial (robotul) reprezentată prin poziția R. Pentru ca R împreună cu perechile de tranziții $\{(t_2, t_3), (t_5, t_6)\}$ să formeze o excludere mutuală secvențială aplicăm următoarele două metode corespunzătoare cazurilor (i) și (ii) din enunț.

Metoda 1 limitează numărul total de clienți prin utilizarea unui număr maxim de x = 3 palete. Rețeaua rezultată este prezentată în fig. AP4.2.4 și este viabilă, mărginită și reversibilă.

Fig. AP4.2.4. *Modelul rezultat după aplicarea Pasului 3 al etapei de sinteză ascendentă, cu limitarea numărului total de clienți admiși în sistem prin intermediul numărului de palete.*

71

Metoda 2 se bazează pe alocarea cu anticipare (în t_2) a unui loc din depozitul D. Rețeaua rezultată este prezentată în fig. AP4.2.5 și este viabilă, mărginită și reversibilă.

Fig. AP4.2.5. *Modelul rezultat după Pasul 3 al etapei de sinteză ascendentă prin alocarea cu anticipare a unui loc din depozitul D.*

În sistem nu avem resurse partajate concomitent paralel și secvențial, în consecință modelul rezultat după *Subpasul 3.2* este cel final.

2. Simulând ambele modele în mediul *Petri Net Toolbox* pentru 10.000 de evenimente și utilizând indicatorii globali de performanță corespunzători tranzițiilor, putem obține numărul total de piese prelucrate în sistem prin consultarea indicatorului *Service Sum* pentru tranziția t_6 , conform fig. AP4.2.6. Cititorul este invitat să formuleze o soluție bazată pe consultarea indicatorilor globali de performanță referitori la pozițiile din cele două rețele.

👺 Petri Net Toolbox - Web Browser			🖉 Petri Net Toolbox - Web Browser		
	Global S	\$		Global S	
Model:cap4pr2_3p.xml			Model:cap4pr2_kanban.xml		
Events:10000		E	vents:10000		
Time:0		т	'ime :0		
Transition Name	Service Sum		Transition Name	Service Sum	
t1	1668		t1	1668	
t2	1668		t2	1667	
t3	1668		t3	1667	
t4	1666		t4	1666	
t5	1665		t5	1666	
t6	1665		t6	1666	
	(a)		(b)		

Fig. AP4.2.6. Indicatorul Service Sum pentru tranzițiile rețelelor din (a) fig. AP4.2.4 și (b) fig. AP4.2.5.

- 73

AP4.3.

Se consideră o celulă de fabricație flexibilă, adaptată după (Zhou and DiCesare, 1993), posedând următoarele resurse, amplasate conform reprezentării schematizate din fig. AP4.3.1.

- cinci mașini cu comandă numerică M₁, M₂, M₃, M₄, M₅;
- două transportoare T₁, T₂;
- patru roboți R₁, R₂, R₃, R₄;
- două depozite interoperaționale D_1 , D_2 de capacități 4 și respectiv 3.

Fig. AP4.3.1. Reprezentarea schematizată a celulei flexibile de fabricație.

La cele două intrări se prezintă două tipuri de piese brute, PB_1 și PB_2 , dintr-o magazie ce conține un număr suficient de mare de piese brute de ambele tipuri.

Fluxul tehnologic de prelucrare a pieselor de tipul PB_1 constă în următoarea succesiune de operații, care produce piese finite de tipul PF_1 , livrate la ieșirea 1:

 1^{0} Piesa fixată pe o paletă este încărcată de către R₁ pe M₁ sau M₂.

 2^{0} Piesa este prelucrată fie pe M₁, fie pe M₂ (executându-se operații identice).

 3^0 Piesa este descărcată de pe M_1 sau M_2 cu ajutorul lui R_3 în depozitul D_1 .

 4^0 Piesa așteaptă în D₁.

 5^0 Piesa este luată din D₁ de către R₃ și încărcată pe M₃.

 6^0 Piesa este prelucrată pe M₃.

 7^0 Piesa este descărcată de pe M₃ cu ajutorul lui R₂ pe transportorul T₁.

 8^0 Piesa este transportată de T₁ la ieșire.

La ieșirea 1, PF_1 este desprinsă de pe paletă, iar paleta goală este trimisă la intrarea 1.

Fluxul tehnologic de prelucrare a pieselor de tipul PB_2 constă în următoarea succesiune de operații, care produce piese de tipul PF_2 , livrate la ieșirea 2.

 1^{0} Piesa fixată pe o paletă este încărcată de către R₁ pe M₄.

 2^0 Piesa este prelucrată pe M₄.

 3^0 Piesa este descărcată de pe M₄ cu ajutorul lui R₄ în depozitul D₂.

4⁰ Piesa așteaptă în D₂.

 5^0 Piesa este luată din D₂ de către R₄ și încărcată pe M₅.

 6^0 Piesa este prelucrată pe M₅.

 7^0 Piesa este descărcată de pe M₅ cu ajutorul lui R₂ pe transportorul T₂.

 8^0 Piesa este transportată de T₂ la ieșire.

La ieșirea 2, PF₂ este desprinsă de pe paletă, iar paleta goală este trimisă la intrarea 2.

Se urmărește construirea unui model tip rețea Petri netemporizată cu proprietățile de mărginire, viabilitate și reversibilitate. Se presupune că nici o resursă nu se alocă cu anticipare, adică înainte de a începe operația care necesită efectiv resursa respectivă. Numărul de palete folosite pentru cele două fluxuri tehnologice, x_1 și, respectiv x_2 , este stabilit la valoarea maximă care permite îndeplinirea condițiilor (C1) – (C4) impuse funcționării structurii de conducere.

- 1. Să se aplice algoritmul de sinteză hibridă. Pentru fiecare pas al algoritmului se va reprezenta rețeaua Petri precizând semnificația fiecărei poziții nou introduse în raport cu pasul precedent.
- 2. Să se verifice prin simulare în mediul *Petri Net Toolbox*, pentru 10.000 de evenimente, funcționarea corectă a structurii de conducere și să se determine:
 - (i) numărul de piese transportate de R₁;
 - (ii) numărul de piese prelucrate pe M₁;
 - (iii) numărul de piese prelucrate pe M₂;
 - (iv) numărul de piese prelucrate pe M₄.
- 3. Să se scrie regulile IF THEN ale controlerului procedural care comandă:
 - (i) alocarea robotului R₁ pentru începerea unei operații;
 - (ii) eliberarea robotului R1 după încheierea unei operații.

- Cap. 4. Controlul procedural al sistemelor cu evenimente discrete ———

75

- 4. Să se comenteze funcționarea structurii de conducere în cazul în care se modifică numărul de palete utilizate astfel:
 - (i) $x_1-1, x_2;$ (ii) $x_1, x_2-1;$ (iii) $x_1+1, x_2;$ (iv) $x_1, x_2+1;$
 - (v) $x_1+1, x_2+1;$

unde valorile x_1 , x_2 sunt cele rezultate din sinteza de la punctul 1. Pentru fiecare din situațiile de la subpunctele (i) – (v) se va preciza care dintre proprietățile de mărginire, viabilitate și reversibilitate se păstrează și care se pierd, explicând totodată motivul.

- 5. Să se arate că, indiferent de numărul de palete utilizate, există întotdeauna strategii de a stabili priorități în alocarea unei resurse partajate, astfel încât funcționarea structurii de conducere să îndeplinească condițiile (C1) (C4) impuse funcționării structurii de conducere.
- 6. Să se simuleze în mediul *Petri Net Toolbox*, pentru 10.000 de evenimente, funcționarea structurii de conducere cu $x_1 = x_2 = 6$ pentru cazul când alocarea unor resurse se realizează pe baza strategiilor de priorități studiate la punctul 5. Să se determine:
 - (i) numărul de piese transportate de R₁;
 - (ii) numărul de piese prelucrate de M₁;
 - (iii) numărul de piese prelucrate de M₂;
 - (iv) numărul de piese prelucrate de M₄.

<u>Soluție</u>

1. Modelul de tip rețea Petri corespunzător succesiunilor de operații și resurselor generale, rafinat prin sinteză descendentă, este prezentat în fig. AP4.3.2. Există două *căi de operații* (corespunzătoare fiecăruia din cele două tipuri de piese) la care se conectează cele două resurse generale (P1 și P2, care modelează paletele disponibile pentru fiecare tip de piese).

Semnificațiile pozițiilor sunt în concordanță cu operațiile care se desfășoară pe cele două fluxuri din sistem: P1 – palete disponibile pentru piese de tipul PB₁; T1R1 – încărcarea pe M₁ sau M₂; PM1 – prelucrare pe M₁; PM2 – prelucrare pe M₂; T1R3 – descărcare de pe M₁ sau M₂ în D; WD1 – stocare în D₁; T2R3 – încărcare din D₁ pe M₃; PM3 – prelucrare pe M₃; T1R2 – descărcare de pe M₃ pe T₁; TT1 – transport cu T₁; P2 – palete disponibile pentru piese de tipul PB₂; T2R1 – încărcare pe M₄; PM4 – prelucrare pe M₄; T1R4 – descărcare de pe M₄ în D₂; WD2 – stocare în D₂; T2R4 – încărcare din D₂ pe M₅; PM5 – prelucrare pe M₅; T2R2 – descărcare de pe M₅ pe T₂; TT2 – transport cu T₂.

Acestui model i se atașează resursele prin sinteză ascendentă.

Fig. AP4.3.2. Modelarea operațiilor în etapa de sinteză descendentă.

Pasul 1: Ataşăm resursele specifice nepartajate:

- Pentru fluxul $PB_1 \rightarrow PF_1$: M_1 , M_2 , M_3 şi T_1 , modelate prin pozițiile cu același nume;
- Pentru fluxul $PB_2 \rightarrow PF_2$: M₄, M₅, și T₂, modelate prin pozițiile cu același nume.

Rețeaua obținută în urma aplicării *Pasului 1* al sintezei ascendente este prezentată în fig. AP4.3.3.

76

Fig. AP4.3.3. Modelul rezultat după aplicarea Pasului 1 al etapei de sinteză ascendentă.

Pasul 2: Ataşăm resursele de stocare.

Subpasul 2.1. Atașăm resursele de stocare nepartajate D_1 (modelată prin D1) și D_2 (modelată prin D2), rezultând rețeaua Petri din fig. AP4.3.4.

Nu există resurse de stocare partajate, deci nu vom executa Subpasul 2.2.

77

Fig. AP4.3.4. Modelul rezultat după aplicarea Pasului 2 al etapei de sinteză ascendentă.

Pasul 3. Ataşăm resursele specifice partajate.

Subpasul 3.1. Ataşăm resursele specifice partajate paralel, în maniera următoare:

- Poziția care modelează disponibilitatea robotului R₁, împreună cu perechile de tranziții $\{(t_1, t_2), (t_1, t_3), (t_{12}, t_{13})\}$, formează o excludere mutuală paralelă;
- Poziția care modelează disponibilitatea robotului R₂, împreună cu perechile de tranziții {(t₉, t₁₀), (t₁₈, t₁₉)}, formează o excludere mutuală paralelă.

Rețeaua rezultată în urma aplicării Subpasului 3.1 este prezentată în fig. AP4.3.5 și este viabilă, mărginită și reversibilă.

Fig. AP4.3.5. Modelul rezultat după Subpasului 3.1 al etapei de sinteză ascendentă.

Subpasul 3.2. Ataşăm robotul R_4 care este o resursă specifică partajată secvențial. Pentru ca poziția ce modelează disponibilitatea robotului R_4 , împreună cu perechile de tranziții { $(t_{14}, t_{15}), (t_{16}, t_{17})$ }, să formeze o excludere mutuală secvențială, aplicăm *Metoda 1* (de limitare a numărului total de clienți), care conduce la un număr maxim de palete $x_2 = 3$ pentru fluxul PB₂ \rightarrow PF₂.

79

80

Rețeaua rezultată în urma aplicării *Subpasului 3.2* este prezentată în fig. AP4.3.6. și posedă proprietățile de viabilitate, mărginire și reversibilitate.

Fig. AP4.3.6. Modelul rezultat după aplicarea Subpasului 3.2 al etapei de sinteză ascendentă.

Subpasul 3.3. Ataşăm robotul R₃ care este o resursă specifică partajată generalizat. Trebuie ca poziția R3 (ce modelează disponibilitatea robotului R₃), împreună cu perechile de tranziții { $(t_5, t_6), (t_4, t_6), (t_7, t_8)$ }, să formeze o excludere mutuală generalizată. Se constată că R3, împreună cu { $(t_5, t_6), (t_4, t_6)$ }, formează o excludere mutuală paralelă. Mai trebuie ca R3, împreună cu { $(t_5, t_6), (t_7, t_8)$ }, și R3, împreună cu { $(t_4, t_6), (t_7, t_8)$ }, să formeze excluderi

mutuale secvențiale. Utilizarea *Metodei 1* (de limitare a numărului total de clienți) conduce la un număr maxim de palete $x_1 = 4$ pentru fluxul PB₁ \rightarrow PF₁.

Fig. AP4.3.7. Modelul rezultat după aplicarea Subpasului 3.3 al etapei de sinteză ascendentă, model ce reprezintă structura de conducere a sistemului de fabricație flexibil.

Rețeaua rezultată în urma aplicării *Subpasului 3.3* este prezentată în fig. AP4.3.7 și constituie structura de conducere a sistemului de fabricație flexibil. Rețeaua este viabilă, mărginită și reversibilă.

2. Utilizând mediul *Petri Net Toolbox* putem verifica funcționarea corectă a structurii de comandă. În urma simulării unui număr de 10.000 de evenimente, se obțin valorile din fig. AP4.3.8.(a) pentru indicatorul *Service Sum* referitor la tranzițiile rețelei.

😤 Petri Net Toolbox - Web Browser			
	Global	s	
/lodel:cap4pr3_l	pas4.xml		
vents:10000			
Time:0			
Transition Name	Service Sum		
t1	584		
t2	282		
t3	302		
t4	301		
t5	282		
t6	583		
t7	581		
t8	581		
t9	581		
t10	581		
t11	580		
t12	531		
t13	530	Í	
t14	530		
t15	529		
t16	529		
t17	529	Ī	
t18	528	Ī	
t19	528	Ī	
+20	528	Ť	

	Global
odel:cap4pr3_p	orio.xml
vents:10000	
me :0	
Transition Name	Service Sum
t1	552
t2	286
t3	265
t4	265
t5	286
t6	551
t7	551
t8	550
t9	549
t10	549
t11	549
t12	562
t13	562
t14	561
t15	561
t16	561
t17	561
t18	560
t19	560
t20	559

(a)

(b)

Fig. AP4.3.8. Indicatorul Service Sum pentru tranzițiile rețelei din fig. AP4.3.7
(a) în cazul x₁ = 4, x₂ = 3 ; (b) în cazul x₁ = x₂ = 6 (cu priorități).

Pe baza acestor valori rezultă:

i) numărul de piese transportate de $R_1 = Service Sum(t_2) + Service Sum(t_3) + Service Sum(t_{13}) = 282 + 302 + 530 = 1.114;$

ii) numărul de piese prelucrate pe $M_1 = Service Sum(t_5) = 282;$

iii) numărul de piese prelucrate pe $M_2 = Service Sum(t_4) = 301;$

iv) numărul de piese prelucrate pe $M_4 = Service Sum(t_{14}) = 530$.

Cititorul este invitat să formuleze o soluție bazată pe consultarea indicatorilor globali de performanță referitori la pozițiile din rețea.

3. Robotul R₁ este alocat prin executarea uneia dintre tranzițiile t_1 și t_{12} . Regula pentru executarea lui t_1 :

IF (R₁ disponibil AND paletă disponibilă)

THEN (alocă robot R_1 AND încărcare pe M_1 sau M_2)

Regula pentru executarea lui t_{12} :

IF (R₁ disponibil AND paletă disponibilă)

THEN (alocă robot R1 AND încărcare pe M4)

Robotul R₁ este eliberat prin executarea uneia dintre tranzițiile t_2 , t_3 și t_{13} . Regula pentru executarea lui t_2 :

IF (M₁ disponibilă AND transport pe M₁ complet)

THEN (eliberează R_1 AND alocă M_1 AND începe prelucrare pe M_1)

Regula pentru executarea lui t_3 :

IF (M₂ disponibilă AND transport pe M₂ complet)

THEN (eliberează R₁ AND alocă M₂ AND începe prelucrare pe M₂)

Regula pentru executarea lui t_{13} :

IF (M₄ disponibilă AND transport pe M₄ complet)

THEN (eliberează R₁ AND alocă M₄ AND începe prelucrare pe M₄)

4. Prin scăderea numărului de palete pe unul dintre fluxurile sistemului de fabricație, proprietățile de mărginire, viabilitate și reversibilitate ale modelului nu sunt alterate. Rețelele corespunzătoare situațiilor de la punctele (i) și (ii) sunt mărginite, viabile și reversibile.

Prin creșterea numărului de palete pe unul dintre fluxurile sistemului, proprietatea de mărginire a rețelei Petri nu este alterată, în timp ce proprietățile de viabilitate și reversibilitate ale modelului se pierd. Astfel, dacă folosim 5 palete pentru piese de tip PB_1 (iii) se poate observa că fluxul 1 se va bloca. Atunci când se folosesc 4 palete pentru piese de tip PB_2 (iv), fluxul 2 se va bloca. În cazul utilizării a 5 palete pentru piese de tip PB_1 și 4 palete pentru piese de tip PB_2 (v) se va bloca întregul sistem.

5. Blocarea primului flux se produce prin alocarea necorespunzătoare a robotului R_3 (resursă partajată secvențial). Dacă impunem ca robotul R_3 să fie alocat cu prioritate pentru operația de încărcare a mașinii M_3 și nu pentru descărcarea mașinii M_1 sau M_2 , putem evita blocarea fluxului 1, indiferent de numărul de palete utilizate. Pe modelul de tip rețea Petri aceasta se realizează asignând prioritate de executare tranziției t_7 față de tranzițiile t_4 și t_5 .

Pentru cel de-al doilea flux blocarea circulară a resurselor se poate produce prin alocarea necorespunzătoare a robotului R_4 (resursă partajată secvențial). Considerând executarea tranziției t_{16} prioritară față de cea a tranziției t_{14} , blocarea circulară a resurselor este evitată, indiferent de numărul de palete utilizate.

6. După simularea apariției unui număr de 10.000 de evenimente în rețeaua Petri ce modelează funcționarea structurii de conducere ce utilizează câte 6 palete pe ambele fluxuri de fabricație, în cazul în care alocarea roboților R_3 și R_4 se realizează pe baza strategiilor de priorități studiate la punctul 5, se obțin valorile prezentate în fig. AP4.3.7.(b). Pe baza acestora se pot obține:

i) numărul de piese transportate de $R_1 = Service Sum(t_2) + Service Sum(t_3) + Service Sum(t_{13}) = 286 + 265 + 562 = 1.113;$

ii) numărul de piese prelucrate pe $M_1 = Service Sum(t_5) = 286$;

iii) numărul de piese prelucrate pe $M_2 = Service Sum(t_4) = 265;$

iv) numărul de piese prelucrate pe $M_4 = Service Sum(t_{14}) = 561$.

Cititorul este invitat să formuleze o soluție bazată pe consultarea indicatorilor globali de performanță referitori la pozițiile din rețea.

Studierea proprietăților structurale

Breviar teoretic

BT5.1. Definirea proprietăților structurale și criterii de caracterizare

Proprietățile *structurale* (eng. *structural*) ale rețelelor Petri netemporizate depind numai de topologia rețelei și nu depind de *marcajul inițial* într-unul din sensurile următoare:

- fie proprietatea se păstrează indiferent de marcajul inițial;
- fie proprietatea se referă la faptul că există marcaje inițiale care asigură anumite secvențe de executări de tranziții.

Această dependență numai de topologie face ca tehnicile de analiză a proprietăților structurale să utilizeze *instrumente specifice algebrei liniare* care exploatează proprietățile *matricei de incidență* (vezi paragraful BT3.4).

În cele ce urmează, $\mathbb{Z}^m(\mathbb{R}^m)$ și $\mathbb{Z}^{n \times m}$, pentru $n, m \in \mathbb{N}^*$, reprezintă mulțimea vectorilor coloană cu *m* elemente numere întregi (reale), respectiv cea a matricelor de dimensiune $n \times m$ cu elemente numere întregi. Vectorul cu toate elementele nule se notează cu $\boldsymbol{\theta}$. Fie $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{Z}^m$ doi vectori de aceeași dimensiune, $\boldsymbol{x} = [x_1, x_2, ..., x_m]^T$, $\boldsymbol{y} = [y_1, y_2, ..., y_m]^T$; în continuare vom utiliza următoarele notații *de tip inegalitate* între vectorii \boldsymbol{x} și \boldsymbol{y} :

$$\begin{aligned} \mathbf{x} < \mathbf{y} \iff \mathbf{x}_i < \mathbf{y}_i, \ \forall i = 1, m; \\ \mathbf{x} \le \mathbf{y} \iff \mathbf{x}_i \le \mathbf{y}_i, \ \forall i = \overline{1, m}; \\ \mathbf{x} < \mathbf{y} \iff \mathbf{x} \le \mathbf{y} \ \text{si} \ \exists i \in \{1, 2, \dots, m\}, \ \mathbf{x}_i \neq \mathbf{y}_i. \end{aligned}$$

BT5.1.1. Mărginire structurală

Se spune că o *rețea Petri* N cu marcajul inițial M_0 este *structural mărginită* dacă este mărginită (în sens comportamental) pentru orice marcaj inițial finit.

Se spune că *o poziție p* a unei rețele Petri este *structural nemărginită* dacă există un marcaj M_0 și o secvență de executări de tranziții σ pornind din M_0 , astfel încât conținutul în jetoane al poziției *p* să devină nemărginit.

Teorema 5.1.1. O rețea Petri *N* este structural mărginită dacă și numai dacă există un vector *m*-dimensional, y > 0, cu toate elementele numere întregi, astfel încât:

$$Ay \le \boldsymbol{\theta} \ . \tag{BT5.1.1}$$

Teorema 5.1.2. Într-o rețea Petri N, o poziție p este structural nemărginită dacă și numai dacă există un vector n-dimensional $x \ge 0$, cu toate elementele numere întregi, astfel încât:

$$A^{T} \mathbf{x} = \Delta M \ge \mathbf{0} \quad \text{si} \quad \Delta M(p) \ge \mathbf{0} . \tag{BT5.1.2}$$

<u>Observație</u>: Relația (BT5.1.2) are semnificația următoare: elementul vectorului $A^T x$, corespunzător poziției p, este pozitiv, celelalte elemente putând fi nule.

BT5.1.2. Conservativitate

Se spune că o rețea Petri *N* este *conservativă* dacă există câte un întreg pozitiv y(p) pentru fiecare poziție *p*, astfel încât pentru orice marcaj inițial M_0 fixat și orice marcaj accesibil din $M_0, M \in R(M_0)$, are loc egalitatea:

$$M^T \mathbf{y} = M_0^T \mathbf{y} (= \text{constant}). \tag{BT5.1.3}$$

Se spune că o rețea Petri *N* este *parțial conservativă* dacă există câte un întreg pozitiv y(p) pentru o parte din pozițiile p (în sensul că nu pentru toate pozițiile), astfel încât pentru orice marcaj inițial M_0 fixat și orice marcaj $M \in R(M_0)$, are loc egalitatea (BT5.1.3).

<u>Observație</u>: Egalitatea (BT5.1.3) are semnificația unei sume ponderate de jetoane care se păstrează pentru orice marcaj accesibil. Atragem atenția că deși egalitatea (BT5.1.3) este una și aceeași pentru conservativitate și conservativitate parțială, în cazul conservativității relația (BT5.1.3) cere y > 0 (vectorial), iar în cazul conservativității parțiale, relația (BT5.1.3) cere numai $y \ge 0$ (vectorial).

Teorema 5.1.3. O rețea Petri N este conservativă dacă și numai dacă există un vector m-dimensional y > 0, cu elementele numere întregi, astfel încât:

$$Ay = \theta \tag{BT5.1.4}$$

Teorema 5.1.4. O rețea Petri *N* este parțial conservativă dacă și numai dacă există un vector *m*-dimensional $y \ge 0$, cu elementele numere întregi, astfel încât să fie satisfăcută egalitatea (BT5.1.4).

BT5.1.3. Repetitivitate

Se spune că o rețea Petri N este *repetitivă* dacă există un marcaj inițial M_0 și o secvență de executări de tranziții σ ce pornește din M_0 , astfel încât orice tranziție apare infinit de des în σ .

Se spune că o rețea Petri N este *parțial repetitivă* dacă există un marcaj inițial M_0 și o secvență de executări de tranziții σ ce pornește din M_0 , astfel încât o parte din tranziții (în sensul că nu toate tranzițiile) apar infinit de des în σ .

Teorema 5.1.5. O rețea Petri N este repetitivă dacă și numai dacă există un vector *n*-dimensional x > 0, cu elemente numere întregi, astfel încât:

$$\boldsymbol{A}^{T}\boldsymbol{x} \geq \boldsymbol{\theta} \,. \tag{BT5.1.5}$$

Teorema 5.1.6. O rețea Petri *N* este parțial repetitivă dacă și numai dacă există un vector *n*-dimensional $x \ge \theta$, cu elementele numere întregi, astfel încât condiția (BT5.1.5) să fie îndeplinită.

BT5.1.4. Consistență

Se spune că o rețea Petri este *consistentă* dacă există un marcaj M_0 și o secvență de executări de tranziții σ de la M_0 înapoi la M_0 , astfel încât fiecare tranziție apare cel puțin o dată în σ .

Se spune că o rețea Petri este *parțial consistentă* dacă există un marcaj M_0 și o secvență de executări de tranziții σ de la M_0 înapoi la M_0 , astfel încât o parte din tranziții (în sensul că nu toate) apar cel puțin o dată în σ .

Teorema 5.1.7. O rețea Petri *N* este consistentă dacă și numai dacă există un vector *n*-dimensional x > 0, cu elementele numere întregi, astfel încât:

$$\boldsymbol{A}^T \boldsymbol{x} = \boldsymbol{\theta} \,. \tag{BT5.1.6}$$

Teorema 5.1.8. O rețea Petri *N* este parțial consistentă dacă și numai dacă există un vector *n*-dimensional $x \ge 0$, cu toate elementele întregi, astfel încât să fie îndeplinită condiția (BT5.1.6).

BT5.1.5. Relații între proprietățile structurale

Tabelul BT5.1.1 prezintă rezumativ condițiile necesare și suficiente pentru existența proprietăților structurale prezentate anterior. În aceste inegalități, vectorul $A^T x$ trebuie privit ca diferență de marcaj corespunzând celor *m* poziții, iar vectorul Ay trebuie interpretat ca schimbare într-o sumă ponderată de jetoane corespunzând executării celor *n* tranziții ale rețelei Petri.

Proprietate structurală	Condiție necesară și suficientă	Teorema
N structural mărginită	$\exists y > \theta a.i. Ay \leq \theta$	5.1.1
N conservativă	$\exists y > \theta a.\hat{i}. Ay = \theta$	5.1.3
N parțial conservativă	$\exists y \ge \neq 0 a.i. Ay = 0$	5.1.4
N repetitivă	$\exists x > \theta$ a.i. $A^T x \ge \theta$	5.1.5
N parțial repetitivă	$\exists x \ge \theta \text{a.i.} A^T x \ge \theta$	5.1.6
N consistentă	$\exists x > \theta$ a.i. $A^T x = \theta$	5.1.7
N parțial consistentă	$\exists x \ge \theta \ a.i. \ A^T x = \theta$	5.1.8

Tab. BT5.1.1. Prezentare rezumativă a criteriilor de tip necesar și suficient pentru existența unor proprietăți structurale.

87

În baza definițiilor proprietăților structurale din secțiunile anterioare se constată că unele din aceste proprietăți constituie *cazuri particulare* ale altora. Cu alte cuvinte *dacă* o rețea Petri N posedă o anumită proprietate structurală, *atunci* va poseda și o altă proprietate structurală, conform implicațiilor prezentate rezumativ în tabelul BT5.1.2.

Implicație	Dacă	⇒ Atunci
1.	N conservativă	N structural mărginită
2.	N consistentă	N repetitivă
3.	N conservativă	N parțial conservativă
4.	N repetitivă	N parțial repetitivă
5.	N consistentă	N parțial consistentă
6.	N parțial consistentă	N parțial repetitivă

Tab. BT5.1.2. Prezentare rezumativă a conexiunilor de tip **dacă–atunci** existente între
proprietățile structurale.

Referitor la ilustrarea proprietăților structurale se vor consulta AP5.1 – AP5.4.

BT5.2. Invarianți

În secțiunea de față continuăm *explorarea algebrică* a proprietăților structurale, în scopul identificării acelor *elemente topologice* (submulțimi de poziții și submulțimi de tranziții) ce asigură conservativitatea (eventual parțială) și respectiv consistența (eventual parțială) a unei rețele Petri.

BT5.2.1. Definiția invarianților

Fie o rețea Petri *N*, a cărei topologie este descrisă prin matricea de incidență $A \in \mathbb{Z}^{n \times m}$. Un vector *m*-dimensional $y \ge \theta$, cu elementele numere întregi se numește *invariant P* al rețelei dacă $Ay = \theta$. Un vector *n*-dimensional $x \ge 0$, cu elementele numere întregi, se numește *invariant T* al rețelei dacă $A^T x = \theta$. Este evident faptul că pentru o rețea Petri pot exista mai mulți invarianți *P* şi/sau mai mulți invarianți *T*.

Mulțimea pozițiilor rețelei N care corespund elementelor nenule ale unui invariant P, notat y, se numește *suportul invariantului* y și se notează cu $\langle y \rangle$. *Mulțimea tranzițiilor* rețelei N care corespund elementelor nenule ale unui invariant T, notat x, se numește *suportul invariantului* x și se notează cu $\langle x \rangle$.

Un suport de invariant (adică o mulțime de poziții, respectiv de tranziții) se numește *minimal* dacă nici o *submulțime strictă* a suportului nu reprezintă tot un suport (evident pentru un alt invariant).

Un invariant *P*, notat *y*, se numește *invariant P minimal*, dacă nu există nici un alt invariant *P*, notat *y'*, astfel încât $y \ge y'$. Un invariant *T*, notat *x*, se numește *invariant T minimal*, dacă nu există nici un alt invariant *T*, notat *x'*, astfel încât $x \ge x'$.

Nu orice *invariant (P sau T) minimal* are suportul minimal (adică pot exista invarianți (*P sau T*) minimali având suporturi neminimale). Nu orice *invariant (P sau T) cu suport minimal* este minimal (adică pot exista invarianți (*P sau T*) cu suport minimal care nu sunt invarianți minimali).

Un invariant minimal cu suport minimal se numește *invariant de bază (fundamental)*. Așadar fiecărei mulțimi (de poziții sau tranziții) care constituie un suport minimal îi corespunde un singur invariant (P sau T) de bază (fundamental) și reciproc.

Teorema 5.2.1. Dacă matricea de incidență a rețelei $A \in \mathbb{Z}^{n \times m}$ are rangul *r*, atunci:

- 1. Rețeaua posedă cel mult m-r invarianți P liniar independenți.
- 2. Rețeaua posedă cel mult n-r invarianți T liniar independenți.

Teorema 5.2.2. Fie a, b doi invarianți de același tip (P sau T) ai unei rețele Petri N. Dacă pentru $\alpha, \beta \in \mathbb{R}_+$, vectorul $\alpha a + \beta b$ are toate elementele întregi, nenegative, atunci:

- 1. $\alpha a + \beta b$ este un invariant (*P* respectiv *T*) al lui *N*.
- 2. $<\alpha a + \beta b > = <a > \cup $.

BT5.2.2. Invarianți în rețele duale și/sau inversate

Fie o rețea Petri N și o rețea N_{di} , construită cu ajutorul lui N, astfel încât:

- (*i*) Nodurile de tip poziție ale lui N_{di} sunt nodurile de tip tranziție ale lui N.
- (*ii*) Nodurile de tip tranziție ale lui N_{di} sunt nodurile de tip poziție ale lui N.
- (*iii*) Arcele lui N_{di} sunt arcele lui N, dar având sensul inversat.

Rețeaua N_{di} se numește *rețeaua duală inversată* a lui *N*. Atragem atenția asupra semnificației acestei construcții și a terminologiei aferente:

- Pornind de la rețeaua N şi aplicând (i), (ii) (fără a inversa sensul arcelor, adică fără (iii)), se obține rețeaua duală N_d.
- Pornind de la rețeaua *N* și schimbând sensul arcelor (adică fără (*i*), (*ii*)), se obține *rețeaua inversată N_i*.

Conexiunea dintre topologiile rețelelor N_d , N_i , N_{di} , și a rețelei originale N este reflectată de relațiile dintre matricele lor de incidență, $A(N_d)$, $A(N_i)$, $A(N_{di})$, respectiv A(N):

$$A(N_d) = -[A(N)]^T$$
, $A(N_i) = -A(N)$, $A(N_{di}) = [A(N)]^T$.

În baza acestor relații, rezultă că problema invarianților are un caracter dual dacă operăm cu o rețea N și duala inversată a acesteia N_{di} (ilustrare în AP5.1).

Teorema 5.2.3. Fie N o rețea Petri și N_{di} duala inversată a acesteia. Atunci sunt adevărate următoarele afirmații:

- 1. Invarianții P ai lui N_{di} coincid cu invarianții T ai lui N.
- 2. Invarianții T ai lui N_{di} coincid cu invarianții P ai lui N.

BT5.2.3. Criterii de caracterizare a invarianților și conexiuni cu proprietățile structurale

Definițiile introduse în paragraful BT5.2.1 pentru invarianții P și T fac posibilă formularea unor condiții de tip necesar și suficient care exploatează descrierea algebrică a topologiei rețelei. Aceste criterii evidențiază legătura directă dintre *invarianții* P și *conservativitate*, pe de o parte, precum și dintre *invarianții* T și *consistență*, pe de altă parte.

Teorema 5.2.4. Un vector *m*-dimensional $y \ge \theta$, cu toate elementele întregi, este un invariant *P*, dacă și numai dacă, pentru un marcaj inițial M_0 arbitrar și pentru orice marcaj accesibil din M_0 , $M \in R(M_0)$, are loc egalitatea:

$$M^{T} \mathbf{y} = M_{0}^{T} \mathbf{y} (= \text{constant}).$$
 (BT5.2.1)

Din relația (BT5.2.1) rezultă următoarea semnificație fizică a invarianților P de bază în modelarea dinamicii operațiilor plus resurselor: fiecărei resurse din sistem i se poate asocia un singur invariant P de bază, iar egalitatea de mai sus are semnificația *conservării* acelei resurse pe parcursul funcționării sistemului.

Teorema 5.2.5. Un vector *n*-dimensional $x \ge \theta$, cu toate elementele întregi, este un invariant *T*, dacă și numai dacă există un marcaj inițial M_0 și o secvență de executări σ , ce pornește din M_0 și ajunge înapoi la M_0 , cu vectorul numărului de executări $\overline{\sigma} = x$.

Observație: Din cele două teoreme de mai sus rezultă următoarele aspecte topologice fundamentale legate de existența invarianților:

- invarianți *P* posedă numai rețelele Petri care sunt parțial conservative;
- invarianți *T* posedă numai rețelele Petri care sunt parțial consistente.

Utilizând criteriul de caracterizare a invarianților P dat de **Teorema 5.2.4**, se poate determina *numărul maxim de jetoane* ce pot exista într-o poziție p, aparținând unuia sau mai multor suporturi minimale de invarianți P.

Teorema 5.2.6. Fie p^* o poziție oarecare a unei rețele Petri cu marcajul inițial M_0 . Fie y^i , i = 1, ..., q, cu $y^i(p^*) > 0$, toți invarianții P de bază ai căror suporturi conțin poziția p^* . Marcajul poziției p^* satisface inegalitatea:

$$M(p^*) \le \min_{i=1,\dots,q} \left[M_0^T \boldsymbol{y}^i / \boldsymbol{y}^i(p^*) \right].$$
(BT5.2.2)

Acest rezultat generalizează **Teorema 3.5.9** din cazul grafurilor marcate; într-un graf marcat pozițiile oricărui circuit elementar reprezintă un suport minimal de invariant P. Mai mult, topologia grafului marcat face ca elementele nenule ale oricărui invariant P de bază să fie egale cu 1. Din aceste considerente rezultă imediat că, pentru grafuri marcate, inegalitatea (BT5.2.2) se reduce la inegalitatea (BT3.5.3).

Se spune că o rețea Petri N este *acoperită de invarianți* P, dacă *fiecare* poziție a lui N aparține suportului unui invariant P de bază. Se spune că o rețea Petri N este *acoperită de invarianți* T, dacă *fiecare* tranziție a lui N aparține suportului unui invariant T de bază.

91

Rețeaua Petri N este acoperită de invarianți P(T) dacă și numai dacă N posedă invarianți P(T) cu toate elementele nenule.

Teorema 5.2.7. Dacă N este o rețea Petri acoperită de invarianți P, atunci N este conservativă și structural mărginită.

Teorema 5.2.8. Dacă N este o rețea Petri acoperită de invarianți T, atunci N este consistentă și repetitivă.

Referitor la ilustrarea invarianților și legătura lor cu proprietățile structurale se vor consulta AP5.1 - AP5.4.

Aplicații

AP5.1.

Se consideră rețelele Petri cu topologiile din fig. AP5.1.1.

Fig. AP5.1.1. Topologiile rețelelor Petri studiate în AP5.1.

Pentru fiecare dintre aceste rețele să se abordeze următoarea problematică:1. Să se determine matricea de incidență.

- 2. Aplicând criteriile algebrice, să se investigheze următoarele proprietăți structurale:
 - (i) mărginire structurală;
 - (ii) conservativitate;
 - (iii) repetitivitate;
 - (iv) consistență.
- 3. Să se determine invarianții P și T și să se pună în evidență legătura cu rezultatele obținute la punctul 2.

<u>Soluție</u>

A. Pentru rețeaua N din fig. AP5.1.1.(a) se obțin următoarele rezultate:

1. Matricele de incidență sunt date de:

$$\boldsymbol{A}^{+} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}, \quad \boldsymbol{A}^{-} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \boldsymbol{A} = \boldsymbol{A}^{+} - \boldsymbol{A}^{-} = \begin{bmatrix} -1 & 0 & 1 \\ 1 & 1 & -1 \end{bmatrix}. \quad (AP5.1.1)$$

2.(i). Studierea proprietății de *mărginire structurală* revine la studierea compatibilității sistemului de inecuații liniare $Ay \le 0$ cu $y \in \mathbb{Z}^3$, y > 0. Din relațiile

$$A\mathbf{y} \le \mathbf{0} \Leftrightarrow \begin{cases} -y_1 + y_3 \le 0\\ y_1 + y_2 - y_3 \le 0 \end{cases} \Leftrightarrow \begin{cases} y_2 \le 0\\ y_3 \le y_1 \end{cases}$$
(AP5.1.2)

rezultă $y_2 \leq 0$, deci rețeaua *N nu este structural mărginită*. Mai exact, faptul că orice vector de forma $y = \begin{bmatrix} \alpha & 0 & \beta \end{bmatrix}^T$, cu $\alpha, \beta \in \mathbb{Z}$, $\alpha \geq \beta > 0$, satisface sistemul de inecuații arată că poziția p_2 este *structural nemărginită*. Într-adevăr, pentru orice marcaj inițial care plasează cel puțin un jeton în p_1 sau în p_3 , pentru secvența în care se execută succesiv tranzițiile t_1 și t_2 , conținutul în jetoane al poziției p_2 devine nemărginit.

(ii). Studierea proprietății de *conservativitate* revine la studierea compatibilității sistemului de ecuații liniare Ay = 0, cu $y \in \mathbb{Z}^3$, y > 0. Deoarece

$$Ay = 0 \Leftrightarrow \begin{cases} y_2 = 0\\ y_1 = y_3 \end{cases}$$
(AP5.1.3)

orice vector de forma $y = \begin{bmatrix} \alpha & 0 & \alpha \end{bmatrix}^T$, cu $\alpha \in \mathbb{Z}$, $\alpha > 0$, satisface sistemul investigat. Pentru că $y_2 = 0$, rețeaua *N nu este conservativă*, dar *este parțial conservativă*.

(iii). Studierea proprietății de *repetitivitate* revine la studierea compatibilității sistemului de inecuații liniare $A^T x \ge 0$, cu $x \in \mathbb{Z}^2$, x > 0:

$$\boldsymbol{A}^{T}\boldsymbol{x} \ge \boldsymbol{\theta} \Leftrightarrow \begin{cases} -x_{1} + x_{2} \ge 0\\ x_{2} \ge 0\\ x_{1} - x_{2} \ge 0 \end{cases} \Leftrightarrow \begin{cases} x_{1} = x_{2}\\ x_{2} \ge 0 \end{cases}$$
(AP5.1.4)

Orice vector de forma $\mathbf{x} = [\alpha \ \alpha]^T$, cu $\alpha \in \mathbb{Z}$, $\alpha > 0$, satisface condițiile impuse, deci rețeaua *N* este structural repetitivă.
(iv). Studierea proprietății de *consistență* revine la studierea compatibilității sistemului de ecuații liniare $A^T x = 0$, cu $x \in \mathbb{Z}^2$, x > 0. Din relația

$$\boldsymbol{A}^{T}\boldsymbol{x} = \boldsymbol{\theta} \Leftrightarrow \begin{cases} -x_{1} + x_{2} = 0\\ x_{2} = 0\\ x_{1} - x_{2} = 0 \end{cases} \Leftrightarrow x_{1} = x_{2} = 0, \qquad (AP5.1.5)$$

rezultă că rețeaua N nu este nici consistentă, nici parțial consistentă.

3. Din discuția de la punctul 2.(ii) rezultă că orice vector de forma $y = \begin{bmatrix} \alpha & 0 & \alpha \end{bmatrix}^T$, cu $\alpha \in \mathbb{Z}, \alpha > 0$, este un invariant de tip *P* al rețelei *N*. Se observă că poziția p_2 nu aparține nici unui suport de invariant *P*. Din relația (AP5.1.5) de la punctul 2.(iv) rezultă că nu se poate pune în evidență nici un invariant *T* pentru rețeaua *N*.

Într-o manieră similară se pot trata punctele 1 - 3 și în cazul rețelelor din fig. AP5.1.1.(b) – (d). Vom lăsa acest tip de abordare drept exercițiu pentru cititor și vom face apel la noțiunile de dualitate și inversare privind topologiile rețelelor Petri (BT5.2.2).

B. Se observă că rețeaua Petri N_i din fig. AP5.1.1.(b) este *inversa* rețelei N din fig. AP5.1.1.(a), astfel că se obțin următoarele rezultate:

1. Matricele de incidență corespunzătoare lui N_i sunt date de:

$$A_i^+ = A^-, \ A_i^- = A^+ \implies A_i = -A.$$
 (AP5.1.6)

2.(i). Din relația (AP5.1.2) rezultă

$$\boldsymbol{A}_{i}\boldsymbol{y} \leq \boldsymbol{\theta} \iff -\boldsymbol{A}\boldsymbol{y} \leq \boldsymbol{\theta} \iff \begin{cases} \boldsymbol{y}_{2} \geq \boldsymbol{0} \\ \boldsymbol{y}_{1} \geq \boldsymbol{y}_{3} \end{cases}$$
(AP5.1.7)

astfel că există vectori $y \in \mathbb{Z}^3$, y > 0, care satisface (AP5.1.7) (de exemplu $y = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$), deci rețeaua N_i este structural mărginită.

(ii). Rețeaua N_i nu este conservativă, dar este parțial conservativă, ca și rețeaua N.
(iii). Din (AP5.1.4) rezultă

$$\boldsymbol{A}_{i}^{T}\boldsymbol{x} \ge \boldsymbol{\theta} \Leftrightarrow -\boldsymbol{A}^{T}\boldsymbol{x} \ge \boldsymbol{\theta} \Leftrightarrow \begin{cases} \boldsymbol{x}_{1} = \boldsymbol{x}_{2} \\ \boldsymbol{x}_{2} \le \boldsymbol{0} \end{cases}$$
(AP5.1.8)

deci rețeaua N_i nu este repetitivă și nici parțial repetitivă. (iv). Rețeaua N_i nu este nici consistentă, nici parțial consistentă, ca și rețeaua N_i

3. Invarianții de tip P(T) ai rețelei N_i coincid cu cei ai rețelei N. Deci orice vector de forma $y = \begin{bmatrix} \alpha & 0 & \alpha \end{bmatrix}^T$, cu $\alpha \in \mathbb{Z}$, $\alpha > 0$, este un invariant de tip P al rețelei N_i și rețeaua N_i nu are nici un invariant T.

C. Rețeaua N_d din fig. AP5.1.1.(c) este *duala* rețelei N din fig. AP5.1.1.(a). 1. Matricele de incidență corespunzătoare lui N_d sunt date de: 94 — Aplicații ale rețelelor Petri – O. Păstrăvanu, M. Matcovschi, C. Mahulea -

$$A_d^+ = (A^-)^T, \ A_d^- = (A^+)^T \implies A_d = -A^T.$$
 (AP5.1.9)

2.(i). Din relația (AP5.1.4) rezultă că N_d este structural mărginită deoarece N este structural repetitivă.

(ii). Din relația (AP5.1.5) rezultă că N_d nu este nici conservativă, nici parțial conservativă deoarece N nu este nici consistentă, nici parțial consistentă.

(iii). Din relația (AP5.1.2) rezultă că N_d este numai parțial repetitivă.

(iv). Din relația (AP5.1.3) rezultă că N_d este numai parțial consistentă.

3. Utilizând relația (AP5.1.9), rezultă că invarianții de tip P(T) ai rețelei N_d coincid cu invarianții de tip T (respectiv P) ai rețelei N, astfel că N_d nu are invarianții de tip P și orice vector de forma $\mathbf{x} = \begin{bmatrix} \alpha & 0 & \alpha \end{bmatrix}^T$, cu $\alpha \in \mathbb{Z}$, $\alpha > 0$, este un invariant de tip T al rețelei N_d .

D. Rețeaua N_{di} din fig. AP5.1.1.(d) este *duala inversată* a rețelei N din fig. AP5.1.1.(a), astfel că se obțin următoarele rezultate:

1. Matricele de incidență corespunzătoare lui N_{di} sunt date de:

$$A_{di}^{+} = (A^{+})^{T}, \quad A_{di}^{-} = (A^{-})^{T} \implies A_{di} = A^{T}.$$
 (AP5.1.10)

2.(i). Din relația (AP5.1.8) rezultă că N_{di} nu este structural mărginită, deoarece N_i nu este nici repetitivă și nici parțial repetitivă.

(ii). Ca și rețeaua N_d , nici N_{di} nu este conservativă și nici parțial conservativă.

(iii). Rețeaua N_{di} nu este repetitivă.

(iv). Rețeaua N_{di} este parțial consistentă.

3. Utilizând relația (AP5.1.10) rezultă că invarianții de tip P(T) ai rețelei N_{di} coincid cu invarianții de tip T (respectiv P) ai rețelei N, astfel că N_{di} nu are invarianți de tip P și orice vector de forma $\mathbf{x} = \begin{bmatrix} \alpha & 0 & \alpha \end{bmatrix}^T$, cu $\alpha \in \mathbb{Z}$, $\alpha > 0$, este un invariant de tip T al rețelei N_{di} .

AP5.2

Ne plasăm în contextul modelului construit în AP4.1 punctul 1

- 1. Să se determine matricele de incidență A^{-}, A^{+}, A care descriu topologia acestui model.
- 2. Să se determine invarianții *P* fundamentali ai rețelei și să se precizeze semnificația fizică a acestora.
- 3. Să determine invarianții *T* fundamentali ai rețelei și să se precizeze semnificația fizică a lor.
- 4. Să se investigheze următoarele proprietăți structurale:
 - (i) mărginirea structurală;
 - (ii) conservativitatea;
 - (iii) repetitivitatea;
 - (iv) consistența.
- 5. Să se precizeze semnificația fizică a rezultatelor de la punctul 4.

<u>Soluție</u>

1. Modelul de tip rețea Petri netemporizată a structurii de conducere care realizează o excludere mutuală a alocării resurselor partajate a fost obținut în capitolul precedent, aplicația **AP4.1**, cu ajutorul algoritmului de sinteză hibridă. Rețeaua rezultată este prezentată în fig. AP4.1.2.

Matricele A^- , A^+ , precum și matricea de incidență A, pot fi vizualizate cu ajutorul mediului *Petri Net Toolbox* utilizând comanda *Incidence Matrix* din meniul *Properties*; rezultatele sunt prezentate în fig. AP5.2.1.

🥠 Petri	Net To	olbox	- In	cidence Matrix	
Places (Transitio	P1, P2, ins (t1,	P1D1, 12, 13, t	P1D 4, t5,	1D2, P2D2, P2D2D t6)	1, D1, D2)
Input Ma	atrix: Ai	(6 x 8):			
1 0 0 0 0 1 0 1 0 0	0 0 1 0 0 1 0 0 0 0	0 0 0 0 0 0 1 0 0 1	1 0 0 1 1	1 0 1 0 0	
Output N	Aatrix: A	vo (6 x	3):		
0 0 0 0 1 0 0 0 0 0	1 0 0 1 0 0 0 0 0 0	0 0 0 0 1 0 0 1 0 1	0 0 1 0 0 1	0 0 1 0 0	
Incidenc	e Matri	x: A = A	۸۰ ۰ A	Ai	
-1 0 0 0 1 0 0 -1 0 0 0 1	1 0 -1 1 0 -1 0 0 0 0	0 0 0 0 1 0 -1 1 0 -1	-1 0 1 0 -1 1	-1 0 1 -1 0 1	
				Ok	

Fig. AP5.2.1. Matricele de incidență pentru rețeaua Petri din fig. AP4.1.2.

2. Matricea de incidență posedă rangul 4, deci rețeaua din fig. AP4.1.2. va avea maximum $m - \operatorname{rang}(A) = 8 - 4 = 4$ invarianți *P* liniar independenți.

Pornind de la semnificația fizică a invarianților P de bază, aceștia pot fi scriși sub forma (ordinea în care sunt considerate pozițiile fiind cea din fig. AP5.2.1):

 $y^{1} = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}^{T},$ $y^{2} = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}^{T},$ $y^{3} = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \end{bmatrix}^{T},$ $y^{4} = \begin{bmatrix} 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}^{T},$

drept urmare a considerentelor de mai jos:

95

96

- Invariantul y^1 este asociat procesorului P_1 și arată că procesorul poate fi neutilizat (P1), utilizat pentru a crea fișier pe D₁ (P1D1), sau utilizat pentru a copia fișierul de pe D₁ pe D₂ (P1D1D2).
- Invariantul y² este asociat procesorului P₂ și arată că procesorul poate fi neutilizat (P2), utilizat pentru a crea fișier pe D₂ (P2D2), sau utilizat pentru a copia fișierul de pe D₂ pe D₁ (P2D2D1).
- Invariantul y^3 este asociat discului D₁ și arată că discul poate fi neutilizat (D1), utilizat pentru crearea unui fișier de către P₁ (P1D1), utilizat pentru ca P₁ să copieze de pe el pe D₂ (P1D1D2), sau utilizat pentru ca P₂ să copieze pe el de pe D₂ (P2D2D1).
- Invariantul y^4 este asociat discului D_2 și arată că discul poate fi neutilizat (D2), utilizat pentru crearea unui fișier de către P_2 (P2D2), utilizat pentru ca P_2 să copieze de pe el pe D_1 (P2D2D1), sau utilizat pentru ca P_1 să copieze pe el de pe D_1 (P1D1D2) sau alocat cu anticipare (P1D1) pentru prima operație efectuată de P_1 .

Se observă că cei patru vectori, determinați mai sus din rațiuni de comportare fizică, satisfac ecuația de definiție a invarianților de tip *P*, Ay = 0. De semenea, acești vectori sunt furnizați de mediul *Petri Net Toolbox* utilizând comanda *P-Invariants* din meniul *Properties / Invariants* - fig. AP5.2.2.(a).

Fig. AP5.2.2. Invarianții fundamentali de tip P(a) și de tip T(b) determinați de **Petri Net Toolbox** pentru rețeaua Petri din fig. AP4.1.2.

3. Deoarece matricea de incidență posedă rangul 4, rețeaua din fig. AP4.1.2. va avea maximum $n - \operatorname{rang}(A) = 6 - 4 = 2$ invarianți *T* liniar independenți.

Pornind de la semnificația fizică a invarianților T de bază, aceștia pot fi scriși sub forma (ordinea în care sunt considerate tranzițiile fiind cea din fig. AP5.2.1):

$$\mathbf{x}^{1} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}^{T},$$
$$\mathbf{x}^{2} = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}^{T}.$$

drept urmare a considerentelor de mai jos:

• Invariantul x^1 este asociat secvenței de executări de tranziții $\sigma^1: t_1, t_2, t_3$ ce corespunde servirii complete a unui task de tipul ST1, care pornește din starea inițială cu toate resursele disponibile și, în final, revine în această stare.

• Invariantul x^2 este asociat secvenței de executări de tranziții $\sigma^2 : t_4, t_5, t_6$ ce corespunde servirii complete a unui task de tipul ST2, care pornește din starea inițială cu toate resursele disponibile și, în final, revine în această stare.

Se observă că cei doi vectori, determinați mai sus din rațiuni fizice, satisfac ecuația de definiție a invarianților de tip T, $A^T x = 0$. De semenea, acești vectori sunt furnizați de mediul *Petri Net Toolbox* utilizând comanda *T-Invariants* din meniul *Properties / Invariants* - fig. AP5.2.2.(b).

4. Se poate observa că rețeaua este acoperită atât de invarianți P cât și de invarianți T. Utilizând **Teoremele 5.2.7** și **5.2.8** putem spune că rețeaua din fig. AP4.1.2. este structural mărginită, conservativă, repetitivă și consistentă, rezultate care sunt confirmate și de *Petri Net Toolbox* (fig. AP5.2.3.).

Fig. AP5.2.3. Studierea proprietăților structurale cu ajutorul mediului Petri Net Toolbox.

5. Semnificația fizică a rezultatelor de la punctul anterior este următoarea:

- Mărginirea structurală ne arată că, oricât de mare ar fi numărul de resurse disponibile la momentul inițial și oricât de multe operații ar fi in curs de servire (pentru orice marcaj inițial finit), în sistem nu se pot desfășura un număr infinit de activități (deoarece în nici o poziție nu se pot acumula un număr infinit de jetoane);
- *Conservativitatea* ne arată că numărul total de resurse existente la momentul inițial (utilizate sau neutilizate) se conservă pe tot parcursul funcționării sistemului de calcul;
- *Repetitivitatea* indică faptul că există o configurație a resurselor disponibile și a operațiilor în curs de servire, de la care plecând, toate activitățile specifice sistemului vor fi începute și respectiv încheiate de un număr infinit de ori;

• *Consistența* indică faptul că există o configurație a resurselor disponibile și a operațiilor în curs de servire, de la care plecând, există o succesiune de evenimente însemnând începerea și respectiv încheierea tuturor activităților (cel puțin o dată), ce permite revenirea la starea inițială.

AP5.3

Ne plasăm în contextul modelului construit în AP4.2 punctul 1.(ii).

- 1. Să se determine matricele de incidență A^{-}, A^{+}, A .
- 2. Să se determine invarianții *P* fundamentali ai rețelei și să se precizeze semnificația fizică a acestora.
- 3. Să determine invarianții *T* fundamentali ai rețelei și să se precizeze semnificația fizică a lor.
- 4. Să se investigheze următoarele proprietăți structurale:
 - (i) mărginirea structurală;
 - (ii) conservativitatea;
 - (iii) repetitivitatea;
 - (iv) consistența.
- 5. Să se precizeze semnificația fizică a rezultatelor de la punctul 4.

<u>Soluție</u>

1. Modelul de tip rețea Petri netemporizată a structurii de conducere care realizează o excludere mutuală a alocării resursei partajate a fost obținut în capitolul precedent, aplicația **AP4.2**, cu ajutorul algoritmului de sinteză hibridă. Rețeaua rezultată este prezentată în fig. AP4.2.5.

Matricea de incidență A, precum și matricele A^- , A^+ , obținute cu ajutorul mediului *Petri Net Toolbox* sunt prezentate în fig. AP5.3.1.

2. Matricea de incidență posedă rangul 5, deci rețeaua din fig. AP4.2.5 va avea maximum $m - \operatorname{rang}(A) = 10 - 5 = 5$ invarianți *P* liniar independenți.

Pornind de la semnificația fizică a invarianților P de bază, aceștia pot fi scriși sub forma (ordinea în care sunt considerate pozițiile fiind cea din fig. AP5.3.1):

 $y^{1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}^{T},$ $y^{2} = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}^{T},$ $y^{3} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}^{T},$ $y^{4} = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}^{T},$ $y^{5} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}^{T}.$

Places (PM1, TR1, WB, PM2, TR2, P, M1, M2, D, R) Transitions (11, 12, 13, 14, 15, 16) nput Matrix: Ai (6 x 10): 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 ncidence Matrix: $A = Ao - Ai$ 1 0 0 0 0 0 -1 -1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 -1 1 0 0 0 0 1 0 0 0 0 -1 1 0 0 0 0 1 0 0 0 0 0 -1 1 0 0 0 0 1 0 0 0 0 -1 1 0 0 0 0 1 0 0 0 0 -1 1 0 0 0 0 1 0 0 0 0 -1 1 0 0 0 0 1 0 0 0 0 -1 1 0 0 0 0 1 0 0 0 0 -1 1 0 0 0 0 1 0 0 0 0 -1 1 0 0 0 0 1 0 0 0 0 -1 1 0 0 0 0 1 0 0 0 0 -1 1 0 0 0 0 1 0 0 0 0 -1 1 0 0 0 0 1 0 0 0 0 -1 1 0 0 0 0 1 0 0 0 0 -1 1 0 0 0 0 1 0 0 0 0 -1 1 0 0 0 0 1 0 0 0 0 -1 1 0 0 0 0 0 0 1 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u>」</u> >	_		atrix	e M	enc	cid	- In	ох	olb	То	Net	tri	🤌 Pe
nput Matrix: Ai (6 x 10): 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0			, R)	11, M2, C	, P, I	R2	2, T t6)	. PM . t5,	w/B, I, t4,	81, M 2, t3	, TF 1, ti	PM1 ns (t	es (F sitio	Place Tran:
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									10):	6 x '	Ai (trix:	Ma	Input
Jutput Matrix: Ao (6 x 10): 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 ncidence Matrix: A = Ao - Ai A - 1 0 0 0 1 - 0 -1 1 0 0 0 1 - - - 0 -1 1 0 0 0 1 - - 1 0 0 0 1 0 0 1 - 0 0 <					0 1 0 1 0	0 1 0 0 0	0 0 1 0	1 0 0 0 0	1 0 0 0 0	0 0 0 0 1	0 0 0 1 0	0 0 1 0	0 0 1 0 0	0 1 0 0 0
1 0								D):	x 10	o (6	x: A	latri	ut M	Outp
ncidence Matrix: A = Ao - Ai 1 0 0 0 0 -1 -1 0 0 0 -1 1 0 0 0 0 1 0 -1 -1 0 -1 1 0 0 0 0 0 0 0 1 0 0 -1 1 0 0 0 -1 1 0 0 0 0 -1 1 0 0 1 0 -1 0 0 0 0 -1 1 0 0 0 1					0 0 1 0 1	0 0 1 0	0 0 0 1 0	0 1 0 0 0	0 0 0 0 1	0 0 0 1 0	0 0 1 0	0 0 1 0 0	0 1 0 0 0	1 0 0 0 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							i	0 - A	= Ac	: A	atrix	еM	enc	Incid
	•				0 -1 1 0 -1 1	0 -1 0 1 0	0 0 -1 1 0	-1 0 0 0	-1 0 0 0 1	0 0 0 1 -1	0 0 1 -1 0	0 0 1 -1 0	0 1 -1 0 0	1 -1 0 0 0

Fig. AP5.3.1. Matricele de incidență pentru rețeaua Petri din fig. AP4.2.5.

Semnificația fizică a invarianților *P* de bază ai rețelei din fig. AP4.2.5 este următoarea:

- Invariantul y¹ este asociat maşinii M₁ şi arată că maşina poate fi neutilizată (M1), sau utilizată (PM1).
- Invariantul y^2 este asociat depozitului D și arată că locurile din depozit pot fi libere (D), ocupate (WB) sau alocate cu anticipare (TR1).
- Invariantul y^3 este asociat mașinii M₂ și arată că mașina poate fi neutilizată (M2) sau utilizată (PM2).
- Invariantul y^4 este asociat robotului R și arată că robotul poate fi neutilizat (R), utilizat pentru descărcarea mașinii M₁ (TR1), sau utilizat pentru descărcarea mașinii M₂ (TR2).
- Invariantul y^5 este asociat paletelor P și arată că paletele pot fi neutilizate (P), sau se pot afla încărcate cu piese în una din pozițiile PM1, TR1, WB, PM2, TR2.

Se observă că cei cinci vectori, determinați mai sus din rațiuni fizice, satisfac ecuația de definiție a invarianților *P*, Ay = 0. De semenea, acești vectori sunt furnizați de mediul *Petri Net Toolbox* - fig. AP5.3.2.(a).

3. Deoarece matricea de incidență posedă rangul 5, rețeaua din fig. AP4.1.2. va avea maximum $n - \operatorname{rang}(A) = 6 - 5 = 1$ invariant *T* liniar independent.

Pornind de la semnificația fizică a invarianților *T* de bază, acesta poate fi scris sub forma: $x = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix}^T$.

99

📣 P invariants	
Minimal-support P-invariants m-rank(Å)=5 => at most 5 P-invariants are linearly independent Linear combinations constructed with these vectors are displayed after Places(PM1,TR1,WB,PM2,TR2,P,M1,M2,D,R) 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	T invariants Minimal-support T-invariants n-rank(A)=1 => at most 1 T-invariants are linearly independent Linear combinations constructed with these vectors are displayed after Transitions(t1,t2,t3,t4,t5,t6) 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(a)	(b)

Fig. AP5.3.2. Invarianții fundamentali de tip P(a) și de tip T(b) determinați de **Petri Net Toolbox** pentru rețeaua Petri din fig. AP4.2.5.

Invariantul x este asociat secvenței de executări de tranziții $\sigma: t_1, t_2, t_3, t_4, t_5, t_6$ corespunzătoare prelucrării complete a unei piese brute, care pornește din starea inițială cu toate resursele disponibile și, în final, revine în această stare.

Se observă că vectorul x, determinat mai sus din rațiuni fizice, satisface ecuația de definiție a invarianților T, $A^T x = 0$. De semenea, acest vector este furnizat de mediul *Petri Net Toolbox* - fig. AP5.3.2.(b).

4. Se poate observa că rețeaua este acoperită atât de invarianți P cât și de invarianți T. Utilizând **Teoremele 5.2.7** și **5.2.8** putem spune că rețeaua din fig. AP4.2.5 este structural mărginită, conservativă, repetitivă și consistentă, rezultate care sunt confirmate și de *Petri Net Toolbox*.

5. Pe seama modului de tratare ilustrat în **AP5.2** sugerăm cititorului să comenteze semnificațiile fizice ale proprietăților structurale analizate la punctul anterior.

AP5.4

Două task-uri partajează aceeași unitate centrală după algoritmul *Round-Robin* (RR) astfel: unitatea centrală execută o secvență de instrucțiuni din taskul 1 și apoi trece la execuția unei secvențe de instrucțiuni din taskul 2, după care revine și execută următoarea secvență de instrucțiuni din taskul 1, comutând apoi la următoarea secvență de instrucțiuni din taskul 2 ș.a.m.d. – adaptare după (David et Alla, 1992).

- 1. Construiți modelul de tip rețea Petri al sistemului a cărui funcționare decurge după algoritmul RR, în următoarele condiții:
 - (i) la fiecare servire a unui task se execută câte o singură instrucțiune din taskul respectiv.

Cap. 5. Studierea proprietăților structurale

- (ii) la fiecare servire a taskului 1 se execută secvențial un set de trei instrucțiuni, iar la fiecare servire a taskului 2 se execută secvențial un set de cinci instrucțiuni.
- Pentru fiecare din modelele construite, precizați semnificația pozițiilor și tranzițiilor.
- 2. Determinați invarianții P și T de bază pentru modelele construite la punctul 1.

<u>Soluție</u>

1. Modelele de tip rețea Petri ce descriu funcționarea unității centrale după algoritmul RR în condițiile de la punctele (i) și (ii) sunt prezentate în fig. AP5.4.1.(a) și, respectiv, AP5.4.1.(b). Semnificațiile fizice ale pozițiilor și tranzițiilor din cele două modele este precizată în tabelele AP5.4.1 și, respectiv, AP5.4.2.

Fig. AP5.4.1. *Rețelele Petri care modelează servirea a două taskuri după algoritmul RR* (a) executând câte o singură instrucțiune din fiecare task;

(b) executând câte o secvență de 3 instrucțiuni din taskul 1 și de 5 instrucțiuni din taskul 2.

Tab. AP5.4.1. Semnificațiile	e tranzițiilor și pozițiilor	[.] din modelul prezentat	în fig. AP5.4.1.(a).
------------------------------	------------------------------	------------------------------------	----------------------

Tranziție	Eveniment
t_1	Începerea executării unei instrucțiuni din taskul 1
t_2	Terminarea executării unei instrucțiuni din taskul 1
t_3	Începerea executării unei instrucțiuni din taskul 2
t_4	Terminarea executării unei instrucțiuni din taskul 2

Poziție	Condiție
p_1	Unitatea centrală disponibilă
p_2	O instrucțiune din taskul 1 este în curs de execuție
p_3	O instrucțiune din taskul 2 este în curs de execuție
p_4	Procesorul poate fi alocat pentru o instrucțiune din taskul 1
p_5	Procesorul poate fi alocat pentru o instrucțiune din taskul 2

- 101

Tranziție	Eveniment					
t_1	Începerea executării unei instrucțiuni din taskul 1					
<i>t</i> ₂ Terminarea executării unei instrucțiuni din taskul 1						
<i>t</i> ₃ Începerea executării unei instrucțiuni din taskul 2						
t_4	Terminarea executării unei instrucțiuni din taskul 2					
<i>t</i> ₅ Preluarea controlul procesorului de taskul 2 de la taskul 1						
<i>t</i> ₆ Preluarea controlul procesorului de taskul 1 de la taskul 2						
Dozitio	Conditio					

Tab. AP5.4.2. Semnificațiile tranzițiilor și pozițiilor din modelul prezentat în fig. AP5.4.1.(b).

<i>v</i> ₀	rielanda controlar processitatat ac taskar i ac ta taskar 2
Poziție	Condiție
p_1	Unitatea centrală disponibilă
p_2	O instrucțiune din taskul 1 este în curs de execuție
p_3	O instrucțiune din taskul 2 este în curs de execuție
p_4	Procesorul poate fi alocat pentru o instrucțiune din taskul 1
p_5	Procesorul poate fi alocat pentru o instrucțiune din taskul 2
p_6	Procesorul a fost alocat pentru o instrucțiune din taskul 1
p_7	Procesorul a fost alocat pentru o instrucțiune din taskul 2

2. Invarianții fundamentali de tip P și de tip T determinați de *Petri Net Toolbox* pentru rețelele Petri din fig. AP5.4.1 sunt prezentați în fig. AP5.4.2 și, respectiv, în fig. AP5.4.3. Cititorul este invitat să formuleze semnificația fizică a acestor invarianți.

Fig. AP5.4.2. Invarianții fundamentali de tip P(a) și de tip T(b) determinați de **Petri Net Toolbox** pentru rețeaua Petri din fig. AP5.4.1.(a).

📣 P invariants	🛃 T invariants
Minimal-support P-invariants m-rank(A)=2 => at most 2 P-invariants are linearly independent Linear combinations constructed with these vectors are displayed after Places (p1, p2, p3, p4, p5, p6, p7) 1 0 1 0 1 0 0 5 0 5 0 3	Minimal-support T-invariants n-rank(A)=1 => at most 1 T-invariants are linearly independent Linear combinations constructed with these vectors are displayed after Transitions (t1, t2, t3, t4, t5, t6) 3 3 5 5 1 1
(a)	(b)

Fig. AP5.4.3. Invarianții fundamentali de tip P(a) și de tip T(b) determinați de **Petri Net Toolbox** pentru rețeaua Petri din fig. AP5.4.1.(b).

Capitolul 6

Modele de tip rețea Petri cu temporizare deterministă

Breviar teoretic

BT6.1. Rețele cu tranziții temporizate

Se spune că o rețea Petri este *cu tranziții temporizate* sau *temporizată T*, dacă fiecărei tranziții t_i , i=1, ..., n, i se asociază un interval de timp $d_i \ge 0$, prin intermediul unei funcții de temporizare tip *T* (tranziție).

Fig. BT6.1.1. Ilustrarea executării unei tranziții temporizate.

În ceea ce privește funcționarea rețelei Petri temporizate *T*, intervalele de timp $d_i \ge 0$ joacă rolul unor *întârzieri* ce se manifestă după cum urmează: din momentul când tranziția t_i este validată, un număr de a_{ij}^- jetoane vor rămâne *rezervate* (nedisponibile din punctul de vedere calitativ, logic, al aplicării regulii tranziției) în poziția p_j care precede t_i pentru d_i unități de timp, înainte de deplasarea lor prin executarea tranziției t_i . (Reamintim că a_{ij}^- notează ponderea arcului de la poziția p_j la tranziția t_i , fiind elementul generic al matricei de incidență de intrare A^-). Ilustrăm cele spuse mai sus prin reprezentarea grafică din fig. BT6.1.1 pentru $a_{ij}^- = 1$ și $M_0(p_j) = 2$. Jetonul rezervat este figurat ca un cerc, iar cel nerezervat ca un disc.

În cazul a două sau mai multe tranziții aflate în conflict, selectarea tranziției care se va executa se realizează pe baza unui mecanism de priorități sau probabilități asignate respectivelor tranziții. De asemenea, se poate folosi o structură de control de tipul celor prezentate în capitolul 4.

Atragem atenția asupra faptului că duratele de timp asociate tranzițiilor nu joacă nici un rol în rezolvarea situațiilor conflictuale, în sensul că nu este obligatoriu să se execute tranziția corespunzătoare celei mai mici durate de timp.

BT6.2. Rețele cu poziții temporizate

Se spune că o rețea Petri este *cu poziții temporizate*, sau *temporizată P*, dacă fiecărei poziții p_j , j = 1,...,m, i se asociază un interval de timp $d_j \ge 0$, prin intermediul unei funcții de temporizare tip *P* (poziție).

Fig. BT6.2.1. Ilustrarea comportării unei poziții temporizate.

În ceea ce privește funcționarea rețelei Petri temporizate P, intervalele de timp $d_j \ge 0$ joacă rolul unei întârzieri ce se manifestă după cum urmează: din momentul când tranziția t_i care precede p_j este executată, un număr de a_{ij}^+ jetoane vor rămâne rezervate (nedisponibile din punct de vedere calitativ, logic, al aplicării regulii tranziției) în poziția p_j pentru d_j unități de timp, înainte de a putea fi utilizate pentru a valida tranziții ce succed lui p_j . (Reamintim că a_{ij}^+ notează ponderea arcului de la tranziția t_i la poziția p_j , fiind elementul generic al matricei de incidentă de iesire A^+).

În cazul temporizării P, se presupune că executarea oricărei tranziții validate are loc instantaneu (nu consumă timp). Ilustrăm cele spuse mai sus prin reprezentarea grafică din fig. BT6.2.1 pentru $a_{ij}^{+} = 1$ și $M_0(p_j) = 1$. Jetonul rezervat este figurat ca un cerc, iar cel nerezervat ca un disc.

În cazul a două sau mai multe tranziții aflate în conflict, selectarea tranziției care se va executa se realizează pe baza unui mecanism de priorități sau probabilități asignate respectivelor tranziții. De asemenea, se poate folosi o structură de control de tipul celor prezentate în capitolul 4.

Rețelele temporizate P se folosesc pentru a introduce în modelul matematic informațiile privitoare la durata activităților, elaborând, astfel, un model *cantitativ*. Cu ajutorul unui asemenea model se pot lua în discuție toate caracteristicile temporale specifice sosirii clienților și servirii acestora cu anumite succesiuni de operații de către resursele sistemului.

În cazul unui model ce reprezintă o structură de conducere a unui sistem cu evenimente discrete, rezultat prin procedeul de sinteză hibridă prezentat în capitolul 4, fiecărei poziții asociate unei operații i se asignează durata activității de servire (procesare), iar fiecărei poziții asociate unei resurse i se asignează durata activității de eliberare a resursei.

BT6.3. Transformarea unei rețele temporizate T într-o rețea temporizată P

Pentru prezentarea procedeului de trecere de la temporizarea T la temporizarea P, utilizăm suportul grafic din fig. BT6.3.1. În fig. BT6.3.1.(a) este prezentată o subrețea dintr-o rețea temporizată T al cărei mod de operare este echivalent cu cel al rețelei temporizate P din fig. BT6.3.1.(b).

Tranziția temporizată T_1 este înlocuită prin structura echivalentă alcătuită din tranzițiile T_1^a , T_1^b și poziția P_1^* . Toate pozițiile de intrare ale lui T_1 sunt poziții de intrare pentru T_1^a și toate pozițiile de ieșire ale lui T_1 sunt poziții de ieșire pentru T_1^b . Durata de timp $d_1 = x > 0$ asignată tranziției T_1 în rețeaua temporizată T, va fi asociată, cu aceeași valoare (notată $d_1^* = x$) poziției P_1^* din rețeaua temporizată P. Acest procedeu se aplică pentru toate tranzițiile temporizate ale rețelei inițiale (temporizată T).

Pozițiile rețelei inițiale (temporizată *T*) sunt preluate identic în rețeaua rezultată (temporizată *P*) asignându-le durate nule (de exemplu, $d_i = 0$, i = 1, 2, 3, 4, în fig. BT6.3.1.(b)). Duratele de timp sunt nenule numai pentru pozițiile suplimentare rezultate

în urma trecerii de la temporizarea T la temporizarea P. Pentru a realiza o distincție grafică ușor sesizabilă, pozițiile care au durate nenule sunt uneori figurate printr-un cerc dublu (ca în fig. BT6.3.1.(b)), spre deosebire de cercul simplu ce simbolizează pozițiile cu durată nulă.

Marcajul inițial al rețelei temporizate T este preluat identic în rețeaua rezultantă (temporizată P). Toate pozițiile suplimentare din rețeaua rezultată (temporizată P) care sunt introduse pentru a realiza temporizarea P (de exemplu P_1^* în fig. BT6.3.1.(b)) au marcajul inițial nul.

Fig. BT6.3.1. Ilustrarea procedeului de transformare a unei rețele temporizate T într-o rețea temporizată P
(a) rețeaua inițială (temporizată T); (b) rețeaua rezultată (temporizată P).

BT6.4. Transformarea unei rețele temporizate P într-o rețea temporizată T

Pentru prezentarea procedeului de trecere de la temporizarea P la temporizarea T, utilizăm suportul grafic din fig. BT6.4.1. În fig. BT6.4.1.(a) este prezentată o subrețea dintr-o rețea temporizată P al cărui mod de operare este echivalent cu cel al rețelei temporizate T din fig. BT6.4.1.(b).

Poziția temporizată P_1 este înlocuită prin structura echivalentă alcătuită din pozițiile P_1^a , P_1^b și tranziția T_1^* . Toate tranzițiile de intrare a lui P_1 sunt tranziții de intrare pentru P_1^a și toate tranzițiile de ieșire ale lui P_1 sunt tranziții de ieșire pentru P_1^b . Durata de timp $d_1 = x > 0$ asignată poziției P_1 în rețeaua temporizată P, va fi asociată, cu aceeași valoare (notată $d_1^* = x > 0$) tranziției T_1^* din rețeaua temporizată T. Acest procedeu se aplică pentru toate pozițiile temporizate alei rețelei inițiale (temporizată P).

Tranzițiile rețelei inițiale (temporizată *P*) sunt preluate în mod identic în rețeaua rezultată (temporizată *T*) asignându-le durate nule (de exemplu $d_i = 0$, i = 1, 2, 3, 4, în fig. BT6.4.1.(b)). Duratele de timp sunt nenule numai pentru tranzițiile suplimentare rezultate în urma trecerii de la temporizarea *P* la temporizarea *T*. Pentru a realiza o distincție grafică ușor sesizabilă, tranzițiile care au durate nenule sunt uneori figurate printr-un dreptunghi (ca în fig. BT6.4.1.(b)), spre deosebire de bara ce simbolizează tranzițiile cu durată nulă.

Marcajul inițial al rețelei rezultate (temporizată *T*) se alocă pe baza marcajului inițial al rețelei temporizate *P*, plasând jetoanele fie în pozițiile cu indice superior '*a*', fie în pozițiile cu indicele superior '*b*' (de exemplu P_1^b , în fig. BT6.4.1.(b)).

Fig. BT6.4.1. Ilustrarea procedeului de transformare a unei rețele temporizate P într-o rețea temporizată T
(a) rețeaua inițială (temporizată P); (b) rețeaua rezultată (temporizată T).

BT6.5. Comportarea periodică a rețelelor Petri acoperite de invarianți *P*, (parțial) consistente, temporizate *T*

Fie N o rețea Petri acoperită de invarianți P, (parțial) consistentă, temporizată T, cu m poziții și n tranziții, pentru care A^- notează matricea de incidență de intrare. Fie M_0 un marcaj inițial și σ o secvență de executări de tranziții care satisfac definiția proprietății de (parțială) consistență a rețelei (adică rețeaua evoluează din marcajul inițial M_0 și revine înapoi la M_0). Rețeaua prezintă o *comportare ciclică* caracterizată prin *durata unui ciclu* τ , care reprezintă intervalul de timp necesar executării secvenței σ . Această comportare ciclică are semnificația unui regim permanent în operarea rețelei, iar τ joacă rolul de *perioadă*.

Date fiind duratele $d_i \ge 0$, i = 1,...,n, asociate tranzițiilor rețelei Petri, să construim matricea diagonală $D \in \mathbb{R}^{n \times n}$ care posedă pe diagonală valorile d_i :

108 — Aplicații ale rețelelor Petri – O. Păstrăvanu, M. Matcovschi, C. Mahulea –

$$(\boldsymbol{D})_{ij} = \begin{cases} d_i, & i = j, \\ 0, & i \neq j, \end{cases}$$
 $i, j = 1, ..., n.$ (BT6.5.1)

Să notăm prin y_k , k = 1, ..., p, invarianții P fundamentali ai rețelei. În termenii acestor construcții prealabile, putem caracteriza durata unui ciclu prin:

Teorema 6.5.1. Durata unui ciclu satisface inegalitatea:

$$\tau \geq \tau_{\min} = \max_{k=1,p} \left\{ \frac{\boldsymbol{y}_{k}^{\mathrm{T}} \left(\boldsymbol{A}^{-}\right)^{\mathrm{T}} \boldsymbol{D} \boldsymbol{x}}{\boldsymbol{y}_{k}^{\mathrm{T}} \boldsymbol{M}_{0}} \right\}, \qquad (BT6.5.2)$$

unde $x = \overline{\sigma}$ notează acel invariant T care corespunde secvenței de executări $M_0[\sigma \rangle M_0$.

<u>Observație:</u> Teorema 6.5.1 nu garantează că valoarea τ_{\min} este efectiv atinsă de perioada cu care operează rețeaua.

Caz particular: Comportarea periodică a grafurilor marcate tare conexe, temporizate T

Topologia de graf marcat tare conex a lui N asigură faptul că soluțiile întregi pozitive ale ecuației $A^T \mathbf{x} = \mathbf{0}$ sunt de forma $\mathbf{x} = \alpha [1 \ 1 \ ... 1]^T$ cu $\alpha \in \mathbb{N}^*$. Rezultă că N este consistentă, garantând existența unui marcaj inițial M_0 și a unei secvențe de executări de tranziții σ (care conține fiecare tranziție o singură dată, $\overline{\sigma} = [1 \ 1 \ ... 1]^T$) astfel încât putem scrie $M_0[\sigma \rangle M_0$. Pe de altă parte, pozițiile oricărui circuit elementar C_k , k = 1, ..., p, din N reprezintă suportul unui invariant P fundamental \mathbf{y}_k , k = 1, ..., p, pentru care toate elementele nenule au valoarea 1.

Coroborând toate aceste informații, putem afirma că operarea periodică a grafului marcat înseamnă executarea unei secvențe de tranziții în care toate tranzițiile grafului apar o singură dată, iar perioada este dată de următorul rezultat:

Teorema 6.5.2. Durata unui ciclu de funcționare este:

$$\tau = \max_{k=1,p} \left\{ \frac{D(C_k)}{M_0(C_k)} \right\},\tag{BT6.5.3}$$

unde $D(C_k)$ și $M_0(C_k)$ notează întârzierea totală pe circuitul C_k (suma tuturor întârzierilor pe tranzițiile lui C_k) și, respectiv, numărul total de jetoane aflate pe circuitului C_k în marcajul inițial.

<u>Observație</u>: Este evident că apariția marcajului inițial la numitorii fracțiilor din relațiile (BT6.5.2) și (BT6.5.3) determină scăderea duratei minime a ciclului de operare τ_{\min} atunci când conținutul inițial în jetoane crește. Acest fapt este mai ușor de înțeles dacă se consideră frecvența maximă de operare $v_{\max} = 1/\tau_{\min}$ care reprezintă numărul maxim de executări ale secvenței σ în unitatea de timp.

BT6.6. Comportarea periodică a rețelelor Petri acoperite de invarianți *P*, (parțial) consistente, temporizate *P*

Problematica abordată în acest paragraf este similară celei tratate în paragraful anterior, numai că în cazul de față considerăm o rețea Petri N acoperită de invarianți P, (parțial) consistentă, temporizată P, cu m poziții și n tranziții, pentru care A^+ notează matricea de incidență de ieșire. Fie M_0 un marcaj inițial și σ o secvență de executări de tranziții care satisfac definiția proprietății de (parțială) consistență a rețelei (adică rețeaua evoluează din marcajul inițial M_0 și revine înapoi la M_0). Rețeaua prezintă o *comportare ciclică* caracterizată prin *durata unui ciclu* τ , care reprezintă intervalul de timp necesar executării secvenței σ . Această comportare ciclică are semnificația unui regim permanent în operarea rețelei, iar τ joacă rolul de *perioadă*.

Date fiind duratele $d_j \ge 0$, j = 1,...,m, asociate pozițiilor rețelei Petri să construim matricea diagonală $D \in \mathbb{R}^{m \times m}$ care posedă pe diagonală valorile d_j :

$$(\mathbf{D})_{ij} = \begin{cases} d_j, & i = j, \\ 0, & i \neq j, \end{cases}$$
 $i, j = 1, \dots, m.$ (BT6.6.1)

Să notăm prin y_k , k = 1, ..., p, invarianții P fundamentali ai rețelei. În termenii acestor construcții prealabile, putem caracteriza durata unui ciclu prin:

Teorema 6.6.1. Durata unui ciclu satisface inegalitatea:

$$\tau \geq \tau_{\min} = \max_{k=1,p} \left\{ \frac{\boldsymbol{y}_{k}^{\mathrm{T}} \boldsymbol{D} (\boldsymbol{A}^{+})^{\mathrm{T}} \boldsymbol{x}}{\boldsymbol{y}_{k}^{\mathrm{T}} \boldsymbol{M}_{0}} \right\}, \qquad (BT6.6.2)$$

unde $\mathbf{x} = \overline{\sigma}$ notează acel invariant *T* care corespunde secvenței de executări $M_0[\sigma \rangle M_0$ (ilustrare în **AP6.3**, **AP6.4**).

<u>Observație:</u> Teorema 6.6.1 nu garantează că valoarea τ_{min} este efectiv atinsă de perioada cu care operează rețeaua (ilustrare în AP6.5).

Caz particular: Comportarea periodică a grafurilor marcate tare conexe, temporizate P

Corespunzător **Teoremei BT6.5.2** din paragraful anterior, pentru un graf marcat tare conex, temporizat *P*, se obține următorul rezultat:

Teorema 6.6.2. Durata unui ciclu de funcționare este:

$$\tau_{\min} = \max_{k=1,p} \left\{ \frac{D(C_k)}{M_0(C_k)} \right\}, \qquad (BT6.6.3)$$

unde $D(C_k)$ și $M_0(C_k)$ notează întârzierea totală pe circuitul C_k (suma tuturor întârzierilor pe pozițiile lui C_k) și, respectiv, numărul total de jetoane aflate pe circuitului C_k în marcajul inițial.

_____ 109

Observația din paragraful anterior cu privire la efectul marcajului inițial asupra duratei minime a unui ciclu de operare a rețelei își păstrează valabilitatea (ilustrare în AP6.1, AP6.2 și AP6.8).

Aplicațiile din acest capitol sunt orientate pe ilustrarea proprietăților rețelelor Petri cu temporizare deterministă de tip P deoarece în capitolele anterioare am utilizat convenția ca desfășurarea activităților (așadar consumatorii de timp) să fie modelată cu ajutorul pozițiilor. Modul în care informațiile temporale pot fi asignate tranzițiilor va fi ilustrat în capitolele 7 și 8, ca o manieră complementară de prezentare a includerii timpului pentru analiza cantitativă a rețelelor Petri. Totodată precizăm că, din punct de vedere istoric, operarea cu temporizări nedeterministe s-a dezvoltat pornind de la convenția că informațiile temporale sunt asignate tranzițiilor. Pe de altă parte, transformările rețelelor temporizate T în rețele temporizate P și invers arată că, în condițiile modelării corecte, alegerea convenției pentru asignarea informațiilor temporale nu influențează concluziile rezultate din analiza cantitativă.

Aplicații

AP6.1.

Se consideră rețelele Petri cu temporizare P din fig. AP6.1.1. Duratele de timp asignate pozițiilor sunt precizate între paranteze. Pentru fiecare dintre cele două rețele să se abordeze următoarea problematică:

- 1. Să se constate instalarea unui regim de funcționare periodic și să se precizeze perioada, utilizând în mod direct informațiile temporale.
- 2. Să se verifice analitic rezultatul de la punctul 1 folosind Teorema 6.6.2.

Fig. AP6.1.1. Rețelele Petri utilizate în AP6.1.

<u>Soluție</u>

A. 1. Rețeaua din fig. AP6.1.1.(a) este graf marcat tare conex și drept urmare, un ciclu de funcționare a rețelei constă în executarea secvenței $\sigma = t_1 t_2$ (care conține fiecare tranziție o singură dată) și are proprietatea $M_0[\sigma\rangle M_0$. Se constată că tranziția t_1 se execută la momentele

0, 5, 10, 15, ..., adică, generalizând, cea de-a *k*-a executare are loc la momentul 5(k-1), $k \in \mathbb{N}^*$. Analog, tranziția t_2 se execută la momentele 3, 8, 13, 18, ..., adică, generalizând, cea de-a *k*-a executare are loc la momentul 5(k-1)+3, $k \in \mathbb{N}^*$. Rezultă că intervalul de timp necesar executării secvenței σ are durata 5, deci funcționarea ciclică a rețelei se desfășoară cu perioada de 5 [unități de timp].

2. Pentru a aplica **Teorema 6.6.2**, identificăm circuitele elementare $C_1 = t_1 p_1 t_2 p_2$ și $C_2 = t_1 p_1 t_2 p_3$, având $D(C_1) = 5$, $M_0(C_1) = 1$, și, respectiv, $D(C_2) = 4$, $M_0(C_2) = 1$. Din relația (BT6.6.3) rezultă că durata unui ciclu de funcționare a rețelei din fig. AP6.1.1.(a) este egală cu 5 [unități de timp], valoare care a fost obținută și la punctul 1 (utilizând în mod direct informațiile temporale).

B. 1. Rețeaua din fig. AP6.1.1.(b) are aceeași topologie ca și cea din fig. AP6.1.1.(a), dar marcaj inițial diferit. Un ciclu de funcționare a rețelei constă în executarea secvenței $\sigma = t_1t_2$. Tranziția t_1 se execută la momentele 0, 2, 5, 7, 10, 12, ..., adică, generalizând, cea de-a (2k-1)-a executare are loc la momentul 5(k-1), $k \in \mathbb{N}^*$, iar cea de-a (2k)-a executare are loc la momentul 5(k-1)+2, $k \in \mathbb{N}^*$. Analog, tranziția t_2 se execută la momentele 0, 3, 5, 8, 10, 13, ..., adică, generalizând, cea de-a (2k-1)-a executare are loc la momentul 5(k-1), $k \in \mathbb{N}^*$, iar cea de-a (2k)-a executare are loc la momentul 5(k-1), $k \in \mathbb{N}^*$. Rezultă că într-un interval de 5 [unități de timp] secvența σ se execută de două ori, deci funcționarea ciclică a rețelei se desfășoară cu perioada de 2,5 [unități de timp].

2. Pentru a aplica **Teorema 6.6.2**, identificăm circuitele elementare $C_1 = t_1 p_1 t_2 p_2$ și $C_2 = t_1 p_1 t_2 p_3$, având $D(C_1) = 5$, $M_0(C_1) = 2$, și, respectiv, $D(C_2) = 4$, $M_0(C_2) = 2$. Din relația (BT6.6.3) rezultă că durata unui ciclu de funcționare a rețelei din fig. AP6.1.1.(b) este egală cu 2,5 [unități de timp], valoare care a fost obținută și la punctul 1 (utilizând în mod direct informațiile temporale).

<u>Observație</u>: Cele două rețele considerate în această aplicație au topologii identice, diferența constatată între perioadele lor de funcționare ciclică fiind datorată în exclusivitate marcajului inițial. În aceeași idee, recomandăm cititorului o comparație cu **AP9.2**.

AP6.2.

Fie protocolul de comunicații studiat în **AP2.4** și **AP3.4**. Se temporizează modelul logic din fig. AP2.4.1 asignând fiecărei poziții p_i durata de timp $d(p_i)$ corespunzătoare operației pe care o reprezintă, pentru i=1,...,8. Se consideră următoarele valori numerice: $d(p_1)=6$, $d(p_2)=3$, $d(p_3)=5$, $d(p_4)=4$, $d(p_5)=7$, $d(p_6)=1$, $d(p_7)=8$ și $d(p_8)=2$ [unități de timp].

1. Să se constate instalarea unui regim de funcționare periodic și să se precizeze perioada, utilizând în mod direct informațiile temporale.

- 2. Să se verifice analitic rezultatul de la punctul 1 folosind Teorema 6.6.2.
- 3. Să se precizeze modul de utilizare a mediului *Petri Net Toolbox* pentru a intra în posesia succesiunii de evenimente corespunzătoare transmiterii complete a unui mesaj și a momentelor de timp la care au loc aceste evenimente.

<u>Soluție</u>

1. Rețeaua din fig. AP2.4.1 este graf marcat tare conex. Drept urmare, un ciclu de funcționare a rețelei constă în executarea unei secvenței σ care conține fiecare tranziție o singură dată și are proprietatea $M_0[\sigma\rangle M_0$. Conform celor constatate la **AP2.4** în lipsa informațiilor temporale, există trei secvențe care satisfac cerințele de mai sus. Întrucât, pornind din marcajul inițial, contextul temporal utilizat face ca ordinea de executare a tranzițiilor să fie $\sigma = t_1 t_2 t_4 t_5 t_6 t_3$, ele se vor executa pentru prima dată la momentele 0, 3, 10, 12, 18, 19. Cunoscând momentele de timp la care se execută tranziția t_1 , se constată că cea de-a k-a executăre are loc la momentul 25(k-1), $k \in \mathbb{N}^*$. Rezultă că intervalul de timp necesar executării secvenței σ are durata 25, deci funcționarea ciclică a rețelei se desfășoară cu perioada de 25 [unități de timp] în care are loc transmiterea completă a unui mesaj prin protocolul de comunicații modelat.

Petri Net Toolbox - Web Browser										
Event Transition Marking Time										
1	t1 on	[1010000]	0							
1	t1 off	[0 1 1 1 0 0 0 0]	0							
2	t2 on	[0 1 1 1 0 0 0 0]	3							
2	t2 off	[0 0 0 1 1 0 0 0]	3							
3	t4 on	[0 0 0 1 1 0 0 0]	10							
3	t4 off	[0 0 0 1 0 0 1 1]	10							
4	t5 on	[0 0 0 1 0 0 1 1]	12							
4	t5 off	[0 0 1 1 0 0 1 0]	12							
5	t6 on	[0 0 1 1 0 0 1 0]	18							
5	t6 off	[0 0 1 0 0 1 0 0]	18							
6	t3 on	[0 0 1 0 0 1 0 0]	19							
6	t3 off	[1010000]	19							
7	t1 on	[1010000]	25							
7	t1 off	[0 1 1 1 0 0 0 0]	25							
	Ok	Save								

Fig. AP6.2.1. Jurnalul înregistrat de **Petri Net Toolbox** pe parcursul simulării a 7 evenimente în rețeaua Petri temporizată P considerată în AP6.2.

2. Pentru a aplica **Teorema 6.6.2**, identificăm circuitele elementare $C_1 = t_1 p_4 t_6 p_6 t_3 p_1$, $C_2 = t_1 p_2 t_2 p_5 t_4 p_7 t_6 p_6 t_3 p_1$ și $C_3 = t_2 p_5 t_4 p_8 t_5 p_3$, având $D(C_1) = 11$, $M_0(C_1) = 1$, $D(C_2) = 25$, $M_0(C_2) = 1$ și, respectiv, $D(C_3) = 14$, $M_0(C_3) = 1$. Din relația (BT6.6.3) rezultă că durata unui ciclu de funcționare este egală cu 25 [unități de timp], valoare care a fost obținută și la punctul 1 (utilizând în mod direct informațiile temporale).

3. Se utilizează opțiunile *Log File* și apoi *View History*, ambele disponibile sub meniul *Simulation* al mediului *Petri Net Toolbox*, obținându-se rezultatele prezentate în fig. AP6.2.1.

AP6.3.

Ne plasăm în contextul modelului construit în **AP4.1** punctul 1. Atașăm fiecărei operații o durată de timp, după cum urmează:

- pentru procesorul P₁: crearea unui fișier pe D₁ durează d₁₁ = 15 secunde; copierea fișierului pe D₂ durează d₁₂ = 10 secunde;
- pentru procesorul P₂: crearea unui fișier pe D₂ durează $d_{22} = 3$ secunde; copierea fișierului pe D₁ durează $d_{21} = 7$ secunde.

Se consideră că duratele de timp necesare eliberării resurselor sunt neglijabile.

- 1. Să se adauge pe modelul din fig. AP4.1.2 duratele de timp specifice activităților.
- 2. Să se utilizeze modelul construit la punctul 1 pentru studierea, cu ajutorul mediului *Petri Net Toolbox*, a următoarelor situații de funcționare:
 - (i) Sistemul funcționează 150 secunde.
 - a. Să se traseze câte o diagramă care să reflecte modul de utilizare a fiecăruia din cele două procesoare P_1 , P_2 .
 - b. Să se precizeze numărul de taskuri servite complet din ST₁, respectiv ST₂.
 - c. Să se precizeze gradul de utilizare a fiecărui procesor ca valoare a raportului (timpul de utilizare a procesorului / timpul de funcționare a sistemului).
 - (ii) Procesorul P_1 servește complet exact 1.000 de taskuri.
 - a. Să se precizeze cât timp a funcționat sistemul.
 - b. Să se precizeze numărul de taskuri servite complet de procesorul P2.
 - c. Să se precizeze gradul de utilizare a fiecărui procesor.
- 3. Presupunând că se servește alternativ câte un task de fiecare tip, să se determine durata unui ciclu de funcționare a sistemului (servirea completă a unui task din ST₁ urmată de servirea completă a unui task din ST₂).
 - (i) folosind **Teorema 6.6.1**;
 - (ii) folosind direct informațiile temporale privind duratele operațiilor.

<u>Soluție</u>

1. Modelul netemporizat pentru sistemul de calcul biprocesor, rezultat în urma aplicării algoritmului de sinteză hibridă, este prezentat în fig. AP4.1.2. Duratele de timp precizate în enunț (d_{11} , d_{12} , d_{22} și d_{21}) se asignează pozițiilor care modelează operațiile (P1D1, P1D1D2, P2D2 și, respectiv, P2D2D1).

2.(i).a. Utilizând instrumentul *Scope* din *Petri Net Toolbox* se obțin graficele de evoluție în timp a indicatorilor *Queue Length* corespunzători pozițiilor P1 și P2 prezentate în fig. AP6.3.1. Prezența jetonului în poziția P1 (P2) are semnificația de disponibilitate a procesorului P_1 (respectiv P_2).

Fig. AP6.3.1. Evoluția indicatorilor **Queue Length** corespunzători pozițiilor (a) P1 și (b) P2 (linie continuă – valoare curentă, linie întreruptă – valoare globală rezultată prin mediere pe intervalul de simulare).

b. Din graficele prezentate în fig. AP6.3.1 se observă că, pe intervalul de simulare de 155 secunde, procesorul P_1 servește complet 5 taskuri (fiecare cu durata de 25 secunde) iar procesorul P_2 servește complet 3 taskuri (fiecare cu durata de 10 secunde).

c. Gradele de utilizare a celor două procesoare sunt 125/155 = 0.8065, pentru P₁, respectiv 30/155 = 0.1935, pentru P₂, după cum rezultă și din fig. AP6.3.1 prin complementarea față de 1 a valorilor globale pentru indicatorii *Queue Length*. Aceste valori globale se regăsesc prin utilizarea opțiunii *Performance / Place Indices*. Deoarece funcționarea sistemului este simulată pe o durată mică, rezultatele obținute nu sunt relevante, după cum se va observa în continuare.

2.(ii).a. Prin intermediul opțiunii *Tokens Arrived in Place* din meniul *Breakpoints* se poate impune oprirea simulării în regim *Run Fast* după ce un număr de 1.000 de jetoane au ajuns în poziția P1 corespunzătoare eliberării procesorului P_1 la terminarea unui task din ST₁. Indicatorii globali de performanță asociați pozițiilor rețelei Petri sunt prezentați în fig. AP6.3.2. Se observă că sistemul a funcționat 35.210 secunde.

b. În intervalul de timp considerat, procesorul P_2 a servit complet 1.021 de taskuri, valoare dată de indicatorul *Arrival Sum* pentru poziția P2.

2	Petri Net 1	roolbox - W	Veb Browser							
				Globa	al Statist	ics: Plac	es			
N	lodel :cap	6pr1.xml								
E	Events:6063									
Т	i me :35210	D								
	Place Name	Arrival Sum	Arrival Rate	Arrival Dist.	Throughput Sum	Throughput Rate	Throughput Dist.	Waiting Time	Queue Length	
	P1	1000	0.028401	35.21	1000	0.028421	35.185	10.21	0.28997	
	P2	1021	0.028997	34.4858	1021	0.028997	34.4858	24.4858	0.71003	
	P1D1	1000	0.028401	35.21	1000	0.028409	35.2	15	0.42602	
	P1D1D2	1000	0.028401	35.21	1000	0.028401	35.21	10	0.28401	
	P2D2	1021	0.028997	34.4858	1021	0.029024	34.4545	3	0.086992	
	P2D2D1	1021	0.028997	34.4858	1021	0.029018	34.4613	7	0.20298	
	D1	2021	0.057398	17.4221	2021	0.057439	17.4097	1.5156	0.086992	
	D2	2021	0.057398	17.4221	2021	0.057439	17.4097	0	0	

Fig. AP6.3.2. Indicatorii globali de performanță asociați pozițiilor, calculați de **Petri Net Toolbox** după servirea completă a 1.000 taskuri din ST₁.

c. Gradele de utilizare a celor două procesoare se obțin prin complementarea față de 1 a valorilor globale pentru indicatorii *Queue Length* corespunzători pozițiilor P1 și P2. Se obțin astfel 71% pentru P₁, respectiv 29% pentru P₂.

3.(i). Aplicăm inegalitatea (BT6.6.2) considerând invarianții *P* fundamentali determinați la **AP5.2**. Secvența de executări de tranziții care corespunde servirii complete a unui task din ST₁ urmată de servirea completă a unui task din ST₂ este $\sigma = t_1 t_2 t_3 t_4 t_5 t_6$ cu $\mathbf{x} = \overline{\sigma} = [1 \ 1 \ 1 \ 1 \ 1 \ 1]^T$, pentru care are loc $M_0[\sigma\rangle M_0$. Rezultă astfel $\tau \ge \tau_{\min} = 35$ secunde. Spre deosebire de cazul grafurilor marcate tare conexe (vezi **AP6.1** și **AP6.2**), **Teorema 6.6.1** nu garantează că valoarea τ_{\min} este efectiv atinsă de perioada cu care operează rețeaua, deoarece se bazează numai pe o caracterizare algebrică globală a funcționării rețelei. Pentru o analiză mai aprofundată este absolut necesară completarea cu informații provenind din investigarea completă a dinamicii în sensul de la punctul următor.

(ii). Urmărind dinamica rețelei pilotată de secvența σ în regim permanent, constatăm că pentru derularea acestei secvențe sunt necesare, în total, 35 secunde, care se consumă astfel (vezi fig. AP4.1.2): 15 secunde pentru P1D1, 10 secunde pentru P1D1D2, 3 secunde pentru P2D2 și 7 secunde pentru P2D2D1. Mai mult, observăm că fiecare activitate începe imediat după terminarea celei precedente (spre deosebire de situația când apar fenomene de așteptare, care va fi ilustrată în **AP6.5**).

- 115

AP6.4.

Pentru sistemul de calcul biprocesor cu reprezentarea schematică din fig. AP3.5.1 se dorește sintetizarea unei structuri de conducere care să asigure funcționarea corectă a sistemului de calcul în următoarele condiții:

- (c1) Pentru ambele tipuri de taskuri, discul pe care se face copierea este alocat în momentul când s-a încheiat crearea fișierului pe celălalt disc (fără anticipare).
- (c2) Taskurile din ST_1 și ST_2 sunt servite alternativ (câte unul din fiecare tip).
- (c3) Servirea începe cu un task din ST_1 .
- 1. Să se reprezinte modelul de tip rețea Petri netemporizată rezultat.
- 2. Să se adauge pe modelul construit la punctul 1 duratele de timp asociate activităților conform specificațiilor din enunțul **AP6.3**.
- 3. Presupunând că într-un anumit interval de timp au fost servite complet același număr de task-uri de tip ST₁ și ST₂, să se determine gradul de utilizare a fiecărei resurse.

<u>Soluție</u>

1. Modelul de tip rețea Petri netemporizată al sistemului de calcul împreună cu structura de conducere este prezentat în fig. AP6.4.1.

Pozițiile ST1 și ST2, nou introduse comparativ cu modelul din fig. AP3.5.2, care satisface condiția (c1), implementează o structură de control care, suplimentar, asigură și îndeplinirea condițiilor (c2) și (c3) impuse în enunț.

Fig. AP6.4.1. Modelul de tip rețea Petri utilizat în AP6.4.

2. Pentru obținerea modelului temporizat, duratele de timp asociate activităților (d_{11} , d_{12} , d_{22} și d_{21}) se asignează pozițiilor care modelează operațiile (P1D1, P1D1D2, P2D2 și, respectiv, P2D2D1).

Cap. 6. Modele de tip rețea Petri cu temporizare deterministă

- 117

Fig. AP6.4.2. Evoluția indicatorilor Queue Length corespunzători pozițiilor (a) P1, (b) P2, (c) D1 şi (d) D2 (linie continuă – valoare curentă, linie întreruptă – valoare globală rezultată prin mediere pe intervalul de simulare). **3.** Utilizând instrumentul *Scope* din *Petri Net Toolbox* se obțin graficele de evoluție în timp a indicatorilor *Queue Length* corespunzători pozițiilor P1, P2, D1 și D2 prezentate în fig. AP6.4.2. Prezența jetonului în poziția P1 (P2) are semnificația de disponibilitate a procesorului P₁ (respectiv P₂), iar prezența jetonului în poziția D1 (D2) are semnificația de disponibilitate a discului D₁ (respectiv D₂).

Se observă că pe durata a 35 secunde, necesară servirii complete a unui task din ST₁ și a unui task din ST₂, P₁ este utilizat 15 + 10 = 25 secunde, P₂ este utilizat 3 + 7 = 10 secunde, D₁ este utilizat 15 + 10 + 7 = 32 secunde iar D₂ este utilizat 10 + 3 + 7 = 20 secunde. Gradele de utilizare a resurselor sunt: 71,43% pentru P₁, 28,57% pentru P₂, 91,43% pentru D₁ și, respectiv, 57,14% pentru D₂.

AP6.5.

Ne plasăm în contextul modelelor construite la **AP4.2** punctul 1, desemnând cu (SC1) modelul de la (i) și cu (SC2) modelul de la (ii). Duratele activităților desfășurate în sistemul de fabricație, exprimate în unități de timp, sunt $d_{M1} = 40$, $d_{M2} = 85$ pentru procesarea pe M₁, respectiv M₂, și $d_{R1} = 20$, $d_{R2} = 20$ pentru descărcarea cu ajutorul lui R a lui M₁, respectiv M₂. Timpul necesitat de eliberarea resurselor M₁, M₂ și respectiv R este considerat neglijabil. Timpul necesitat de eliberarea unei palete este $d_p = 20$.

- 1. Să se adauge pe modelele (SC1) și (SC2) duratele de timp specifice activităților.
- 2. Să se utilizeze cele două modele pentru analiza în mediul *Petri Net Toolbox* a funcționării sistemului pe un interval de timp de 50.000 [unități de timp], precizând:
 - (i) durata medie necesară fabricării unui produs finit;
 - (ii) numărul de produse finite fabricate;
 - (iii) gradul de utilizare a maşinilor M_1 şi M_2 .
- 3. Să se justifice teoretic rezultatele de la 2.(i) folosind **Teorema 6.6.1**.

<u>Soluție</u>

(i)

1. Modelele de tip rețea Petri netemporizată pentru structurile de conducere (SC1) și (SC2) sunt prezentate în fig. AP4.2.4 și, respectiv, AP4.2.5. Pentru obținerea modelelor temporizate, duratele de timp asociate activităților (d_{M1} , d_{M2} , d_{R1} și d_{R2}) se asignează pozițiilor care modelează operațiile (PM1, PM2, TR1 și, respectiv, TR2). Durata de eliberare a unei palete, d_p , se asignează poziției care modelează disponibilitatea paletelor (P).

2. Indicatorii globali de performanță referitori la pozițiile rețelelor, determinați în urma simulării modelelor temporizate pe un interval de timp de 50.000 unități de timp, sunt prezentați în fig. AP6.5.1 (pentru SC1) și fig. AP6.5.2 (pentru SC2). Pe baza informațiilor din fig. AP6.5.1 și fig. AP6.5.2 se pot evalua performanțele sistemului de fabricație:

- durata medie necesară fabricării unui produs finit:
 - pentru SC1: 100,25 [unități de timp],
 - pentru SC2: 85,24 [unități de timp],

valorile fiind date de indicatorul Arrival Distance pentru poziția P;

Petri Ne	t Toolbox	- Web Browse	er					_0			
Global Statistics: Places											
lodel:ap65_SC1.xml											
vents :3003											
ime:50025											
Place Name	Arrival Sum	Arrival Rate	Arrival Dist.	Throughput Sum	Throughput Rate	Throughput Dist.	Waiting Time	Queue Length			
PM1	502	0.010035	99.6514	502	0.010035	99.6514	40	0.4014			
TR1	502	0.010035	99.6514	501	0.010031	99.6906	20	0.2003			
WB	501	0.010015	99.8503	500	0.009995	100.05	99.86	0.9981			
PM2	500	0.009995	100.05	499	0.009975	100.2505	100.1303	0.9988			
TR2	499	0.009975	100.2505	499	0.009987	100.1303	20	0.1995			
Ρ	499	0.009975	100.2505	502	0.010043	99.5717	20.1195	0.2019			
M1	502	0.010035	99.6514	502	0.010043	99.5717	59.6514	0.5986			
D	500	0.009995	100.05	501	0.010015	99.8503	100.0399	1.0019			
M2	499	0.009975	100.2505	500	0.010011	99.89	0.12	0.0011994			
R	1000	0.01999	50.025	1001	0.02001	49.975	29 995	0.6002			

Fig. AP6.5.1. Indicatorii globali de performanță referitori la pozițiile din modelul (SCI).

👺 Petri Net Toolbox - Web Browser														
	Global Statistics: Places													
vlodel:ap65_SC2.xml														
• – Events:3534														
Time :50040														
Place Name	ace Arrival Arrival Arrival Th ame Sum Rate Dist.		Throughput Sum	Throughput Rate	Throughput Dist.	Waiting Time	Queue Length							
PM1	591	0.011811	84.6701	590	0.011791	84.8136	64.9153	0.76539						
TR1	590	0.011791	84.8136	590	0.011801	84.7373	20	0.23581						
WB	590	0.011791	84.8136	588	0.011751	85.102	129.8639	1.526						
PM2	588	0.011751	85.102	588	0.011751	85.102	85	0.9988						
TR2	588	0.011751	85.102	587	0.011746	85.1363	20	0.23461						
Р	587	0.011731	85.247	591	0.011821	84.5939	20.2707	0.23941						
M1	590	0.011791	84.8136	591	0.011821	84.5939	19.8646	0.23461						
M2	588	0.011751	85.102	588	0.011771	84.9575	0.10204	0.001199						
D	588	0.011751	85.102	590	0.011806	84.7034	20.2034	0.23821						
R	1177	0.023521	42.5149	1178	0.023541	42.4788	22.4958	0.52958						
				Ok	Save									

Fig. AP6.5.2. Indicatorii globali de performanță referitori la pozițiile din modelul (SC2).

- (ii) numărul de produse finite fabricate:
 - pentru SC1: 499 piese,
 - pentru SC2: 587 piese,

valorile fiind date de indicatorul Arrival Sum pentru poziția P;

- (iii) gradul de utilizare a maşinilor M_1 şi M_2 :
 - pentru SC1: 40,1% pentru M_1 și 99,8% pentru M_2 ,
 - pentru SC2: 76,5% pentru M₁ și 99,8% pentru M₂,

valorile fiind date de indicatorul Queue Length pentru pozițiile PM1 și PM2.

<u>Observație:</u> Dacă, pentru modelul (SC1), se compară indicatorul *Waiting Time* pentru poziția PM2 din tabelul prezentat în fig. AP6.5.1 (100,13 [unități de timp]) cu valoarea cunoscută a timpului de procesare a unei piese pe mașina M_2 (85 [unități de timp]) se constată că mașina M_2 este ocupată cu piesă și după încheierea prelucrării, piesa așteptând disponibilitatea robotului pentru descărcare. Această situație conduce la interpretarea că valoarea de 99,8% menționată mai sus pentru M_2 măsoară ceea ce am putea numi drept "grad de ocupare" al resursei, gradul de utilizare propriu-zisă fiind mai mic. O remarcă similară se poate face și în cazul modelului (SC2) cu referire la mașina M_1 .

3. Pentru modelul (SC1) aplicăm inegalitatea (BT6.6.2) cu invarianții *P* fundamentali determinați la **AP5.3**. Secvența de executări de tranziții care corespunde prelucrării complete a unei piese în sistemul de fabricație este $\sigma = t_1 t_2 t_3 t_4 t_5 t_6$ cu $\mathbf{x} = \overline{\sigma} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix}^T$, pentru care are loc $M_0[\sigma\rangle M_0$. Rezultă astfel că durata minimă a unui ciclu de funcționare a sistemului este $\tau_{\min} = 85$ [unități de timp]. Valoarea obținută prin simulare, și anume 100 [unități de timp], este strict mai mare decât τ_{\min} . Aceasta se datorează faptului că la terminarea prelucrării unei piese pe mașina M₂ robotul nu incepe imediat descărcarea acesteia, fiind ocupat cu transportarea unei alte piese de pe M₁ în depozit (a se vedea deosebirea față de situația ilustrată în **AP6.3**).

AP6.6.

Fie sistemul de fabricație cu modelul (SC1) din AP6.5.

- 1. Se consideră că durata constantă necesară eliberării paletelor d_P este ajustabilă între limitele [d_{Pmin} , d_{Pmax}], unde $d_{Pmin} = 20$ și $d_{Pmax} = 30$.
 - (i) Folosind meniul *Design* al mediului *Petri Net Toolbox* să se realizeze o reprezentare grafică a duratei medii necesare fabricării unui produs finit în funcție de valoarea d_P, pentru un timp de funcționare de 50.000 [unități de timp].
 - (ii) Să se precizeze în ce condiții de alegere a valorii d_P durata medie de fabricare a unui produs finit este minimă.
 - (iii) Se consideră valoarea d_P obținută la punctul (ii). Să se precizeze dacă prin ajustarea duratelor de timp ale activităților de transport, se poate obține o durată medie de fabricare a unui produs inferioară celei de la (ii) şi să se motiveze.

- 2. Pentru d_P din **AP6.5** se consideră că duratele celor două operații de transport realizate de robot, d_{R1} , d_{R2} , sunt ajustabile independent între limitele $[d_{R1min}, d_{R1max}]$ și, respectiv, $[d_{R2min}, d_{R2max}]$, unde $d_{R1min} = d_{R2min} = 18$ și $d_{R1max} = d_{R2max} = 22$.
 - (i) Folosind meniul **Design** al mediului **Petri Net Toolbox** să se realizeze o reprezentare grafică a duratei medii necesare fabricării unui produs finit în funcție de valorile d_{R1} și d_{R2} , considerând loturi de câte 1.000 produse finite.
 - (ii) Să se precizeze în ce condiții de alegere a valorilor d_{R1} și d_{R2} durata medie de fabricare a unui produs finit este minimă.
 - (iii) Se consideră valorile d_{R1} și d_{R2} obținute la punctul (ii). Să se precizeze dacă prin ajustarea duratei de timp a eliberării paletelor se poate obține o durată medie de fabricare a unui produs inferioară celei de la (ii) și să se motiveze.

<u>Soluție</u>

1.(i). Utilizând instrumentul **Design** disponibil în mediul **Petri Net Toolbox**, se obține reprezentare grafică din fig. AP6.6.1 a duratei medii necesare fabricării unui produs finit (valoarea indicatorului **Arrival Distance** pentru poziția P) în funcție de valoarea d_P , considerată drept parametru, pentru un timp de funcționare de 50.000 [unități de timp].

Fig. AP6.6.1 *Evoluția duratei medii de fabricare a unei piese în funcție de durata de eliberare a unei palete.*

(ii). Consultând graficul din fig. AP6.6.1 se observă că pentru o durată de eliberare a paletelor strict mai mare de 25 [unități de timp], durata medie de fabricare este minimă și are valoarea 85,18 [unități de timp]. Cititorului îi este recomandat să interpreteze alura graficului din

fig. AP6.6.1 și să justifice dependența duratei medii de fabricare de durata de eliberare a paletelor.

(iii). Mașina M₂ (ce poate prelucra o singură piesă la un moment dat) reprezintă resursa de tip "bottleneck" din sistemul de fabricație, pe ea desfășurându-se operația cu cea mai mare durată. Deoarece operațiile efectuate asupra unei piese se desfășoară secvențial, durata medie a unui ciclu de fabricație nu poate fi redusă sub durata operației care se desfășoară pe resursa "bottleneck", adică 85 [unități de timp], oricare ar fi duratele de timp ale activităților de transport. Valoarea de 85,18 [unități de timp] (determinată de *Petri Net Toolbox*) este afectată de o eroare sub 0,25% datorate simulării numerice.

2.(i). Utilizând instrumentul **Design** disponibil în mediul **Petri Net Toolbox**, se obține reprezentare grafică din fig. AP6.6.2 a duratei medii necesare fabricării unui produs finit (valoarea indicatorului **Arrival Distance** pentru poziția P) în funcție de valorile d_{R1} și d_{R2} , considerate drept parametri, pentru loturi de câte 1.000 produse finite.

Fig. AP6.6.2 Evoluția duratei medii de fabricare a unei piese în funcție de duratele activităților de transport.

(ii). Consultând graficul din fig. AP6.6.2 se observă că pentru duratele activităților de transport $d_{R1} = d_{R2} = 18$ [unități de timp] durata unui ciclu de fabricație este minimă și are valoarea 96,06 [unități de timp]. Cititorului îi este recomandat să interpreteze alura suprafeței din fig. AP6.6.2 și să justifice dependența duratei ciclului de fabricație de duratele activităților de transport.

(iii). Conform observațiilor de la punctul 1.(ii) ajustând durata de eliberare a paletelor se poate obține o durată a ciclului de fabricație apropiată de 85 [unități de timp].

AP6.7.

Fie sistemul de fabricație cu modelul (SC1) din **AP6.5** cu singura deosebire că pentru transportul pieselor se folosesc 4 palete în loc de 3. Pentru obținerea aceluiași produs finit se utilizează două loturi de piese brute diferite L₁, L₂. Pentru piesele din L₁, duratele operațiilor sunt cele din **AP6.5**. Piesele din L₂ diferă de cele din L₁ numai prin durata procesării pe mașina M₂, notată $d_{M2}^* = 75$ [unități de timp].

- 1. Să se simuleze funcționarea sistemului de fabricație pentru un interval de 50.000 [unități de timp] considerând piese din lotul L_1 , și apoi din lotul L_2 și să se precizeze durata medie de fabricație a unui produs finit. Să se comenteze și explice rezultatele prin prisma structurii de conducere (SC1).
- Sistemul funcționează alimentat cu piese din lotul L₂. Să se traseze câte o diagramă care să reflecte modul de utilizare a resurselor M₁, M₂, R, pentru un interval de timp de 250 [unități de timp].

<u>Soluție</u>

1. Pentru piesele din lotul L_1 sistemul se blochează (ajunge în deadlock), în timp ce pentru piesele din lotul L_2 sistemul funcționează fără blocaj. Detaliind, pentru piesele din lotul L_1 , având durata de prelucrare pe mașina M_2 de 85 [unități de timp], poate apărea situația în care robotul disponibil este alocat pentru descărcarea lui M_1 deși depozitul este plin și există piesă în curs de prelucrare pe M_2 . O atare situație nu poate apărea în cazul prelucrării pieselor din lotul L_2 (cititorul va justifica de ce).

é	🖄 Petri Net Toolbox - Web Browser														
	Global Statistics: Places														
Model:ap6_7_L2.xml															
E	vents:4	002													
т	i me :500	15													
	Place Name	lace Arrival Arrival lame Sum Rate		Arrival Dist.	Throughput Sum	Throughput Rate	Throughput Dist.	Waiting Time	Queue Length						
	PM1	669	0.013376	74.7608	668	0.013356	74.8728	54.9626	0.73408						
	TR1	668	0.013356	74.8728	668	0.013365	74.8204	20	0.26712						
	WB	668	0.013356	74.8728	666	0.013316	75.0976	109.8949	1.4634						
	PM2	666	0.013316	75.0976	666	0.013316	75.0976	75.0075	0.9988						
	TR2	666	0.013316	75.0976	665	0.013311	75.1278	20	0.26592						
	Р	665	0.013296	75.2105	669	0.013385	74.7085	20.2392	0.27072						
	M1	668	0.013356	74.8728	669	0.013385	74.7085	19.8804	0.26592						
	D	666	0.013316	75.0976	668	0.013365	74.8204	40.1796	0.53664						
	M2	666	0.013316	75.0976	666	0.013336	74.985	0.09009	0.0011996						
	R	1333	0.026652	37.5206	1334	0.026672	37.4925	17.5075	0.46696						

Fig. AP6.7.1. Indicatorii globali de performanță pentru pozițiile modelului (SCI) corespunzător prelucrării pieselor din lotul L₂.

124 — Aplicații ale rețelelor Petri – O. Păstrăvanu, M. Matcovschi, C. Mahulea

Pentru piesele din lotul L_2 durata medie de fabricație a unui produs finit, anume 75,21 [unități de timp] reprezintă valoarea indicatorului *Arrival Distance* pentru poziția P (fig. AP6.7.1).

2. Considerând sistemul de fabricație alimentat cu piese din lotul L_2 , diagramele din fig. AP6.7.2 (obținute cu ajutorul instrumentului *Scope* din *Petri Net Toolbox*) prezintă evoluția indicatorilor *Queue Length* corespunzători pozițiilor PM1, PM2 și R pe un interval de circa 250 [unități de timp]. Prezența jetonului în poziția PM1 (PM2) are semnificația de utilizare a mașinii M₁ (respectiv M₂), iar prezența jetonului în poziția R are semnificația de disponibilitate a robotului R.

Fig. AP6.7.2. Evoluția indicatorilor Queue Length corespunzători pozițiilor (a) PM1, (b) PM2 şi (c) R (linie continuă – valoare curentă, linie întreruptă – valoare globală rezultată prin mediere pe intervalul de simulare).

AP6.8.

Se consideră o celulă de fabricație flexibilă orientată pe producția diversificată (eng. *job shop*). Celula conține două mașini de prelucrare universale M_1 , M_2 și sisteme de transport adecvate. Se fabrică 3 tipuri de produse P_1 , P_2 , P_3 care necesită următoarele secvențe de prelucrări:

- pentru produsul P₁: prelucrare 1 pe M₁ (durata d₁₁ = 3 min), prelucrare 2 pe M₂ (durata d₁₂ = 5 min);
- pentru produsul P₂: prelucrare 1 pe M₂ (durata d₂₂ = 6 min), prelucrare 2 pe M₁ (durata d₂₁ = 4 min);
- pentru produsul P₃: prelucrare 1 pe M₁ (durata $d_{31} = 7 \text{ min}$), prelucrare 2 pe M₂ (durata $d_{32} = 3 \text{ min}$).

Duratele pentru operațiile de transport și pentru eliberarea resurselor sunt considerate neglijabile. Se presupune că numărul de piese brute este suficient de mare.

Se consideră următoarele două strategii de planificare a servirii produselor (clienților) P_1 , P_2 , P_3 de către resursele M_1 , M_2 :

- (S_1) M₁: P₁, P₂, P₃; M₂: P₁, P₂, P₃;
- $(S_2) M_1: P_1, P_3, P_2; \qquad M_2: P_1, P_3, P_2.$
- 1. Să se construiască modelul tip rețea Petri temporizată P al căilor de operații pentru P₁, P₂, P₃.
- 2. Să se atașeze modelului construit la punctul 1 structurile de control care asigură planificarea servirii conform (S_1) și, respectiv, (S_2) .
- 3. Să se utilizeze aceste modele în mediul *Petri Net Toolbox* pentru a determina duratele medii de producere a celor trei tipuri de produse, dacă funcționarea celulei durează 100 ore.
- 4. Să se justifice teoretic rezultatele de la punctul 3 folosind **Teorema 6.6.2** pentru a determina durata minimă a unui ciclu de funcționare.

<u>Soluție</u>

Fig. AP6.8.1. Modelul de tip rețea Petri al căilor de operații din celula de fabricație studiată în AP6.8.

1. Modelul de tip rețea Petri al căilor de operații pentru cele trei tipuri de piese este prezentat în fig. AP6.8.1. Operația de prelucrare a unei piese de tipul P_i, i = 1,2,3, pe mașina M_j, j = 1,2, este reprezentată prin poziția notată **pimj**, căreia îi este asignată durata d_{ij} .

2. Prin adăugarea structurilor de control care asigură planificarea servirii conform celor două strategii rezultă rețelele Petri prezentate în fig. AP6.8.2 (pentru S_1) și fig. AP6.8.3 (pentru S_2). Pozițiile notate p7, p8, ..., p12, care aparțin structurii de control, nu sunt temporizate.

Fig. AP6.8.2. Modelul de tip rețea Petri pentru celula de fabricație cu structura de control care asigură planificarea servirii clienților conform strategiei (S₁).

Fig. AP6.8.3. Modelul de tip rețea Petri pentru celula de fabricație cu structura de control care asigură planificarea servirii clienților conform strategiei (S₂).

Сар. 6.	Modele	de tip	rețea Petri	СИ .	temporizare	deterministă
---------	--------	--------	-------------	------	-------------	--------------

Petri Net Toolbox - Web Browser														
Global Statistics: Places														
Aodel:ap68_S1 xml														
Events:2159														
Fime:6000														
Place Name	Arrival Sum	Arrival Rate	Arrival Dist.	Throughput Sum	Throughput Rate	Throughput Dist.	Waiting Time	Queue Length						
p1m1	240	0.04	25	240	0.040147	24.9083	3	0.12						
p1m2	240	0.04	25	240	0.040114	24.9292	5	0.2						
p2m2	240	0.04	25	25 240 (24.9542	6	0.24						
p2m1	240	0.04	25	240	0.040047	24.9708	4	0.16						
p3m1	240	0.04	25	240	0.04	25	7	0.28						
p3m2	240	0.04	25	239	0.03998	25.0126	3	0.1195						
р7	240	0.04	25	240	0.040167	24.8958	0	0						
p8	240	0.04	25	240	0.040073	24.9542	11	0.44						
p9	240	0.04	25	240	0.040047	24.9708	0	0						
p10	239	0.039833	25.1046	240	0.040147	24.9083	0.0125	0.0005						
p11	240	0.04	25	240	240 0.040114 24.9292 0		0	0						
p12	240	0.04	25	240	0.04	25	11	0.44						
				Ok	Save									

Fig. AP6.8.4. Indicatorii globali de performanță pentru pozițiile rețelei din fig. AP6.8.2.

Betri Net Toolbox - Web Browser													
Global Statistics: Places													
fodel:ap68_S2.xml													
Events:2349													
fime:6003													
Place Name	Arrival Sum	Arrival Rate	Arrival Dist.	Throughput Sum	Throughput Rate	Throughput Dist.	Waiting Time	Queue Length					
p1m1	261	0.043478	23	261	0.043624	22.9234	3	0.13043					
p1m2	261	0.043478	23	261	0.043587	22.9425	5	0.21739					
p2m2	261	0.043478	23	261	0.043507	22.9847	6	0.26087					
p2m1	261	0.043478	23	261	0.043478	23	4	0.17391					
p3m1	261	0.043478	23	261	0.043573	22.9502	7	0.30435					
p3m2	261	0.043478	23	261	0.043551	22.9617	3	0.13043					
p7	261	0.043478	23	261	0.043645	22.9119	0	0					
p8	261	0.043478	23	261	0.043624	22.9234	0	0					
p9	261	0.043478	23	261	0.043507	22.9847	9	0.3913					
p10	261	0.043478	23	261	0.043551	22.9617	0	0					
p11	261	0.043478	23	261	0.043478	23	7	0.30435					
p12	261	0.043478	23	261	0.043573	22.9502	2	0.086957					
				Ok	Save								

Fig. AP6.8.5. Indicatorii globali de performanță pentru pozițiile rețelei din fig. AP6.8.3.

3. Rezultatele furnizate de *Petri Net Toolbox* după simularea funcționării celulei de fabricație timp de 100 ore sunt prezentate în fig. AP6.8.4 pentru S_1 și fig. AP6.8.5 pentru S_2 . Valorile indicatorilor *Throughput Distance* pentru pozițiile p1m2, p2m1 și p3m2 reprezintă duratele medii de fabricare a unei piese și anume: circa 25 minute dacă se aplică strategia (S_1) și circa 23 minute dacă se aplică strategia (S_2).

4. Se observă că rețeaua Petri din fig. AP6.8.2 este graf marcat tare conex, astfel încât aplicarea **Teoremei 6.6.2** are obiect. Pentru aceasta determinăm mai întâi circuitele elementare utilizând *Petri Net Toolbox* cu opțiunea *P-Invariants* din meniul *Properties / Invariants* care permit identificarea pozițiilor din fiecare circuit. Drept urmare, invarianților din fig. AP6.8.3.(a), parcurși de la stânga la dreapta, le corespund următoarele circuite:

 $C_1 = t2, p8, t5, p12, t8, p3m2, t9, p10;$ $C_2 = t2, p1m2, t3, p11, t4, p2m2, t5, p12, t8, p3m2, t9, p10;$ $C_3 = t2, p8, t5, p2m1, t6, p9, t7, p3m1, t8, p3m2, t9, p10;$ $C_4 = t2, p1m2, t3, p11, t4, p2m2, t5, p2m1, t6, p9, t7, p3m1, t8, p3m2, t9, p10;$ $C_5 = t1, p1m1, t2, p8, t5, p12, t8, p7;$ $C_6 = t1, p1m1, t2, p1m2, t3, p11, t4, p2m2, t5, p12, t8, p7;$ $C_7 = t1, p1m1, t2, p8, t5, p2m1, t6, p9, t7, p3m1, t8, p7;$ $C_8 = t1, p1m1, t2, p1m2, t3, p11, t4, p2m2, t5, p2m1, t6, p9, t7, p3m1, t8, p7.$

Marcajul inițial plasează pe fiecare dintre aceste circuite exact un jeton. Circuitului C_8 îi corespunde cea mai mare întârziere totală, egală cu 25 minute, astfel că durata totală a unui ciclu de funcționare a grafului marcat din fig. AP6.8.2 este, conform (BT6.5.3), de 25 minute.

Similar se tratează situația grafului marcat din fig. AP6.8.3, ai cărui invarianți *P* calculați de *Petri Net Toolbox* sunt afișați în fig. AP6.8.6.(b). Tratarea completă o lăsăm cititorului drept exercițiu.

📣 P invariants											4	P inv	aria	nts													
	Minimal-support P-invariants m-rank(A)=4 => at most 4 P-invariants are linearly independent Linear combinations constructed with these vectors are displayed after								Minimal-support P-invariants m-rank(A)=4 => at most 4 P-invariants are linearly independent Linear combinations constructed with these vectors are displayed after Places (=1=1 = 1=2 = 2=2 = 2=1 = 2=1 = 2=2 = 7 = 0 = 10 = 11 = 12																		
	Places	(p i n	н, рі	mΖ,	p2m2	, pzr	н, ра	smi,	р <i>зт</i> и, р	r, pø, p	pa, pru,	p11, p12j		laces	(p i m	11, PT	m2, p	ozmz,	. p∠m	n, pa	imi,	p3m2	: р/, р)8, p9,	ріо, р	н, рі	2)
	0 0 0 1 0 1 0 1 0	0 1 0 0 1 0 1 1 1	0 0 1 1 0 1 1 0 0	0 1 1 1 0 1 1 0	1 0 0 0 1 1 0 0	1 1 0 0 1 0 1 1	$ \begin{array}{c} 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ $	1 1 1 1 0 1 0 1 0						0 0 0 0 1 1 1	0 0 1 0 1 1 0	0 1 0 1 0 0 1 1 1	0 1 1 1 1 0 1 1 0	1 0 1 0 1 0 1 0 1	1 0 1 1 0 1 1 0 0	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ $	1 1 1 1 1 0 0 0						

Fig. AP6.8.6. Invarianții de tip P ai rețelelor Petri din (a) fig. AP6.8.2 și (b) fig. AP6.8.3.

(b)

(a)
Capitolul 7

Modele de tip rețea Petri cu temporizare stohastică

Breviar teoretic

BT7.1. Principiile temporizării stohastice

Dacă duratele de timp asignate tranzițiilor (pozițiilor) unei rețele Petri cu temporizare T (sau P) au valori aleatoare, se spune că rețeaua respectivă este cu *temporizare stohastică*. În situația în care rețeaua Petri modelează un sistem fizic, este natural a considera că durata de timp asignată unei tranziții (poziții) ce reprezintă o operație, respectă o anumită distribuție de probabilitate. În acest mod, fiecărei tranziții (poziții) temporizate îi este asociată distribuția de probabilitate corespunzătoare duratei de timp asignate. O rețea cu temporizare deterministă poate fi privită drept un caz particular de rețea cu temporizare stohastică (corespunzătoare distribuției constante).

Subliniem faptul că duratele de timp asociate tranzițiilor nu joacă nici un rol în rezolvarea situațiilor conflictuale, spre deosebire de cazul *rețelelor Petri stohastice* care urmează a fi prezentate în capitolul 8. În cazul a două sau mai multe tranziții aflate în conflict într-o rețea Petri cu *temporizare T stohastică*, selectarea tranziției t_i care urmează să se execute se realizează pe baza mecanismului de priorități sau probabilități asignate respectivelor tranziții (similar principiului prezentat în contextul rețelelor cu temporizare *T* deterministă). Apoi se generează durata de timp d_i corespunzătoare legii de repartiție asociată tranziției t_i selectate. Analog situației detaliate în paragraful BT6.1, jetoanele aflate în pozițiile de intrare ale tranziției t_i și care urmează a fi deplasate la executarea acesteia, rămân rezervate în aceste poziții pe durata d_i . Această durată reprezintă întârzierea manifestată din momentul când tranziția este validată până la executarea acesteia.

Pentru rețelele Petri cu *temporizare* P stohastică, similar rețelelor cu temporizare P deterministă, după executarea instantanee a unei tranziții t_i ce precede o poziție temporizată p_j , jetoanele care sunt depuse în p_j prin executarea lui t_i rămân rezervate în p_j pe durata d_j , generată în conformitate cu legea de repartiție asociată poziției p_j . În cazul a două sau mai multe tranziții aflate în conflict, selectarea tranziției care se va executa se realizează pe baza unui mecanism de priorități sau probabilități asignate respectivelor tranziții.

În cazul unui model pentru o structură de conducere a unui sistem cu evenimente discrete, rezultat prin procedeul de sinteză hibridă prezentat în capitolul 4, fiecărei poziții

corespunzătoare unei operații i se asociază legea de distribuție a duratei activității de servire (procesare), iar fiecărei poziții corespunzătoare unei resurse i se asociază legea de distribuție a duratei activității de eliberare a resursei.

BT7.2. Variabile aleatoare - scurtă trecere în revistă

BT7.2.1. Variabile aleatoare

Un concept de bază în teoria probabilităților îl reprezintă cel de *experiment*. Mulțimea Ω a tuturor realizărilor posibile ale unui experiment se numește *spațiul eșantioanelor* (eng. *sample space*) acelui experiment. O colecție de submulțimi ale lui Ω formează *spațiul evenimentelor* (eng. *event space*) \mathbb{E} . *Funcția de probabilitate P* (eng. *probability function*) asociază fiecărui eveniment probabilitatea de apariție în urma realizării unui experiment. Tripletul (Ω, \mathbb{E}, P) se numește *câmp de probabilitate* (eng. *probability field*).

Probabilitatea de apariție a evenimentului A în ipoteza că s-a produs evenimentul B, notată P[A|B], se numește *probabilitate condițională* și este dată de formula $P[A|B] = P[A \cap B]/P[B]$, unde $P[A \cap B]$ notează probabilitatea de apariție a evenimentului ,,A și B". Două evenimente A și B sunt *independente* dacă și numai dacă $P[A \cap B] = P[A] \cdot P[B]$ (ceea ce înseamnă că P[A|B] = P[A], adică probabilitatea de apariție a evenimentului A nu este influențată de apariția evenimentului B).

O variabilă aleatoare (eng. random variable) (reală) X asociază un număr real $X(\omega)$ fiecărei realizări posibile ω a unui experiment. Astfel, o variabilă aleatoare X reprezintă o funcție definită pe spațiul eșantioanelor Ω cu valori în mulțimea numerelor reale \mathbb{R} , $X: \Omega \to \mathbb{R}$. Pentru consistența definiției se impune ca mulțimea $\{\omega \in \Omega | X(\omega) \le x\}$, notată și $[X \le x]$, să reprezinte un eveniment (să aparțină spațiului evenimentelor \mathbb{E}) pentru orice $x \in \mathbb{R}$. Mulțimea valorilor pe care le poate lua variabila aleatoare X, $\{x \in \mathbb{R} | X(\omega) = x, \omega \in \Omega\}$, poate fi finită sau numărabilă, caz în care se spune că variabila aleatoare este *discretă*. O variabilă aleatoare pentru care mulțimea valorilor posibile este un interval al dreptei reale (nu neapărat mărginit) este numită *continuă*.

BT7.2.2. Funcție de repartiție. Densitate de repartiție

Se numește *funcția de repartiție* (sau *de distribuție*) (eng. *cumulative distribution function - cdf*) a variabilei aleatoare *X* aplicația definită prin relația:

$$F: \mathbb{R} \to [0, 1], \ F(x) = P[X \le x].$$
 (BT7.2.1)

Funcția de repartiție a unei variabile aleatoare X este continuă la dreapta în orice punct $x \in \mathbb{R}$, și are următoarele proprietăți:

$$F(-\infty) = \lim_{x \to -\infty} F(x) = 0, \quad F(+\infty) = \lim_{x \to +\infty} F(x) = 1,$$

$$P[x_1 < X \le x_2] = F(x_2) - F(x_1), \quad P[X > x] = 1 - F(x),$$

$$F(x_1) \le F(x_2), \quad x_1 \le x_2.$$

(BT7.2.2)

Pentru o variabilă aleatoare discretă, $X \in \{x_1, x_2, ...\}$, care ia valoarea x_i cu probabilitatea p_i , i = 1, 2, ..., se definește *densitatea de repartiție*, (eng: *probability density function – pdf*) prin relația:

$$p: \mathbb{R} \to [0, 1], \ p(x) = P[X = x] = \begin{cases} p_i, \ \text{dacă} \ x = x_i, \\ 0, \ \text{dacă} \ x \neq x_i. \end{cases}$$
 (BT7.2.3)

Relația de legătură dintre funcția de repartiție și densitatea de repartiție ale unei variabile aleatoare discrete este:

$$F(x) = \sum_{y \le x} p(y)$$
. (BT7.2.4)

Densitatea de repartiție a unei variabile aleatoare continue X se definește prin relația:

$$f(x) = \frac{dF(x)}{dx} = \lim_{\Delta x \to 0} \frac{P[x < X \le x + \Delta x]}{\Delta x},$$
 (BT7.2.5)

în ipoteza că derivata aceasta există peste tot în \mathbb{R} , cu excepția a cel mult un număr finit de puncte. Relația de legătură dintre funcția de repartiție și densitatea de repartiție ale unei variabile aleatoare continue este:

$$F(x) = \int_{-\infty}^{x} f(\tau) d\tau . \qquad (BT7.2.6)$$

În practică suntem adeseori puși în situația de a lua în considerare simultan două sau mai multe variabile aleatoare. Dacă X și Y sunt două variabile aleatoare reale definite peste același câmp de probabilitate, atunci perechea Z = (X, Y) este un vector aleator bidimensional, $Z : \Omega \to \mathbb{R}^2$.

Se numește *funcția de repartiție* a vectorului aleator bidimensional Z = (X, Y) aplicația $F : \mathbb{R}^2 \to [0, 1]$, dată de

$$F_{X,Y}(x,y) = P[X \le x, Y \le y], \ \forall x, y \in \mathbb{R}.$$
(BT7.2.7)

Densitatea de repartiție (eng: joint density distribution function) a vectorului aleator bidimensional Z = (X, Y) derivata a doua parțială mixtă (dacă există) a funcției sale de repartiție:

$$f_{X,Y}(x,y) = \frac{\partial^2 F_{X,Y}(x,y)}{\partial x \partial y}.$$
 (BT7.2.8)

Funcția de densitate de repartiție bidimensională $f_{X,Y}(x, y)$ are proprietățile:

$$f_{X,Y}(x,y) \ge 0, \quad x,y \in \mathbb{R}; \qquad \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_{X,Y}(x,y) \, dx \, dy = 1.$$
 (BT7.2.9)

Două variabile aleatoare X și Y sunt *independente* dacă și numai dacă evenimentele $[X \le x]$ și $[Y \le y]$ sunt independente pentru orice $x, y \in \mathbb{R}$, deci dacă și numai dacă

$$F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y), \quad \forall x, y \in \mathbb{R}.$$
(BT7.2.10)

BT7.2.3. Funcții de variabile aleatoare

Presupunem că între două variabile aleatoare X și Y există relația Y = g(X) și că funcția de repartiție și densitatea de repartiție a variabilei X sunt cunoscute, fiind notate $F_X(x)$, respectiv $f_X(x)$. Funcția de repartiție a variabilei Y, $F_Y(y)$, se poate calcula pe baza relației:

$$F_{Y}(y) = P[Y \le y] = P[g(X) \le y].$$
(BT7.2.11)

Natura funcției $g(\cdot)$ determină modul de calcul efectiv al funcției $F_y(y)$. Dacă funcția g este derivabilă, densitatea de repartiție a variabilei Y, $f_y(y)$, poate fi calculată cu ajutorul formulei:

$$f_{Y}(y) = \sum_{i} \frac{f_{X}(x_{i})}{|g'(x_{i})|},$$
 (BT7.2.12)

unde $x_1, x_2, ...$ reprezintă rădăcinile ecuației y = g(x) și $g'(x_i)$ notează valoarea derivatei dg(x)/dx în punctul $x = x_i$.

În general, funcția de repartiție $F_{Y}(y)$ poate fi determinată prin evaluarea integralei:

$$F_{Y}(y) = \int_{S(y)} f_{X}(x) dx$$
, (BT7.2.13)

unde S(y) este mulțimea punctelor $\{x | g(x) \le y\}$. Complexitatea calcului acestei integrale depinde de complexitatea domeniului S(y), care, la rândul său, depinde de complexitatea funcției $g(\cdot)$.

Relațiile de mai sus se pot extinde în mod natural la cazul funcțiilor care depind de mai multe variabile aleatoare. În particular, dacă Z = g(X, Y) este o funcție de două variabile aleatoare, atunci

$$F_{Z}(z) = \int_{S(z)} f_{X,Y}(x, y) \, dx \, dy \,, \tag{BT7.2.14}$$

unde $f_{X,Y}(x, y)$ este densitatea de repartiție a vectorului aleator bidimensional (X, Y) și $S(z) = \{(x, y) | g(x, y) \le z\}$.

De exemplu, dacă X și Y sunt variabile aleatoare independente $(f_{X,Y}(x, y) = f_X(x)f_Y(y))$ și Z = X + Y, densitatea de repartiție $f_Z(z) = dF_Z(z)/dz$ este dată de:

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(\tau) f_Y(z-\tau) d\tau$$
 (BT7.2.15)

Acest rezultat se poate extinde la suma a *n* variabile aleatoare independente.

BT7.2.4. Caracteristici ale distribuțiilor de probabilitate

BT7.2.4.1. Valoare medie

Pentru variabila aleatoare discretă *X* care ia valorile $x_1, x_2, ...,$ cu probabilitățile $p_1, p_2, ...,$ se definește *valoarea medie* (eng: *expectation*) a variabilei aleatoare prin relația:

$$M[X] = \sum_{i} x_{i} p_{i}^{not} = m_{X}, \qquad (BT7.2.16)$$

dacă seria de mai sus este absolut convergentă, adică $\sum_{i} |x_i| p_i < +\infty$.

Analog, *valoarea medie* a unei variabile aleatoare continuă X având densitatea de repartiție f, este definită prin relația:

$$M[X] = \int_{-\infty}^{+\infty} x f(x) \, dx = m_X, \qquad (BT7.2.17)$$

dacă integrala din membrul doi este convergentă.

Dacă X şi Y sunt variabile aleatoare având valori medii finite, atunci

$$M[X+Y] = M[X] + M[Y],$$

 $M[X \cdot Y] = M[X] \cdot M[Y],$ dacă X şi Y sunt independente, (BT7.2.18)
 $M[cX] = c M[X], \quad \forall c \in \mathbb{R}.$

BT7.2.4.2. Dispersie (varianță)

Dispersia (*varianța*) (eng: *variance*) variabilei aleatoare X care are valoarea medie m_X este dată de:

Var[X] = M[(X - m_X)²]^{not}
$$\sigma_X^2$$
, (BT7.2.19)

dacă există valoarea medie a variabilei aleatoare $(X - m_X)^2$. Numărul $\sigma_X = \sqrt{Var[X]}$ se numește *deviație standard* (eng: *standard deviation*).

Dispersia unei variabile aleatoare discrete X care ia valorile $x_1, x_2, ...,$ cu probabilitățile $p_1, p_2, ...,$ este:

$$Var[X] = \sum_{i} (x_{i} - m_{X})^{2} p_{i}.$$
 (BT7.2.20)

Dispersia variabilei aleatoare continue X având densitatea de repartiție f este:

$$\operatorname{Var}[X] = \int_{-\infty}^{+\infty} (x - m_X)^2 f(x) dx \,. \tag{BT7.2.21}$$

Se pot demonstra următoarele proprietăți:

$$Var[X] = M[X^{2}] - (M[X])^{2},$$

$$Var[cX] = c^{2} Var[X], \quad \forall c \in \mathbb{R},$$

$$Var[c+X] = Var[X], \quad \forall c \in \mathbb{R},$$

$$Var[X+Y] = Var[X] + Var[Y], \quad dacă X \ i Y \ sunt \ independente.$$

$$P[|X-m_{X}| \ge k\sigma_{X}] \le \frac{1}{k^{2}}, \quad k \in \mathbb{R}, \quad k > 0 \quad (inegaltatea \ lui \ Cebîşev).$$

(BT7.2.22)

BT7.2.4.3. Moment de ordin k

Se numește moment de ordin k (eng: k-th moment) al variabilei aleatoare X media variabilei X^k ,

$$\mu_k[X] = M[X^k], (BT7.2.23)$$

dacă această valoare medie există.

Pentru o variabilă aleatoare discretă X care ia valorile $x_1, x_2, ...,$ cu probabilitățile $p_1, p_2, ...,$ se obține

$$\mu_k[X] = \sum_i x_i^k p_i , \qquad (BT7.2.24)$$

iar pentru o variabilă aleatoare continuă X cu densitatea de repartiție f,

$$\mu_{k}[X] = \int_{-\infty}^{+\infty} x^{k} f(x) dx.$$
 (BT7.2.25)

Se numește moment centrat de ordin k (eng: k-th centered moment) al variabilei aleatoare X care are valoarea medie m_X , media variabilei $(X - m_X)^k$, (dacă această valoare medie există)

$$\mu_k^{\circ}[X] = \mathbf{M}\left[\left(X - m_X\right)^k\right]. \tag{BT7.2.26}$$

Pentru o variabilă aleatoare discretă X se obține:

$$\mu_k^{\circ}[X] = \sum_i (x_i - m_X)^k p_i .$$
 (BT7.2.27)

iar pentru o variabilă aleatoare continuă X:

$$\mu_{k}^{\circ}[X] = \int_{-\infty}^{+\infty} (x - m_{X})^{k} f(x) dx. \qquad (BT7.2.28)$$

Se observă că $\mu_1^{\circ}[X] = 0$ și $\mu_2^{\circ}[X] = \operatorname{Var}[X]$.

BT7.2.4.4. Covarianță

Se numește *covarianță* (eng: *covariance*) a variabilelor aleatoare *X* și *Y* peste același câmp de probabilitate numărul (dacă acesta există)

$$Cov[X,Y] = M[(X - m_x)(Y - m_Y)].$$
 (BT7.2.29)

Sunt satisfăcute următoarele proprietăți:

$$Cov[X,Y] = Cov[Y,X], Cov[X,X] = Var[X],$$

$$Cov[X,Y] = M[XY] - M[X]M[Y],$$

$$Cov[X,Y] = 0, dacă X si Y sunt independente,$$

$$Cov[X+Y,Z] = Cov[X,Z] + Cov[Y,Z].$$

(BT7.2.30)

Coeficientul de corelație (eng: *correlation coefficient*) a două variabile aleatoare X și Y ale căror deviații standard sunt σ_X , respectiv σ_Y , este definit prin:

$$\rho_{X,Y} = \frac{\operatorname{Cov}[X,Y]}{\sigma_X \sigma_Y}.$$
(BT7.2.31)

O valoare pozitivă a lui $\rho_{X,Y}$ înseamnă că variabilele aleatoare X și Y prezintă variații în același sens. O valoare negativă a lui $\rho_{X,Y}$ înseamnă că variabilele aleatoare X și Y prezintă variații în sensuri contrare.

Dacă modulul coeficientului de corelație $|\rho_{X,Y}|$ are o valoare apropiată de 1, înseamnă că între variabilele aleatoare X și Y există a puternică dependență de factură liniară. Dacă modulul coeficientului de corelație $|\rho_{X,Y}|$ are o valoare apropiată de 0, înseamnă că dependența de factură liniară între variabilele aleatoare X și Y este redusă.(fără ca aceasta să excludă posibilitatea unei dependențe de factură neliniară). Dacă modulul coeficientului de corelație $|\rho_{X,Y}|$ are exact valoarea 1, înseamnă că între variabilele aleatoare X și Y există o dependență liniară strictă.

Astfel, dacă modulul coeficientului de corelație $|\rho_{X,Y}|$ are o valoare apropiată de 1, atunci se poate efectua o analiză de regresie, căutând o dependență între valorile variabilelor X și Y de factură liniară, Y(X) = AX + B. Valorile numerice ale parametrilor A și B se obțin ca soluție a unei probleme de minimizare formulată în sensul celor mai mici pătrate.

BT7.2.5. Legea numerelor mari. Legi limită

Există mai multe *legi ale numerelor mari* care stabilesc legătura dintre frecvența de apariție a unui eveniment și probabilitate, utilizate pentru a justifica rezultatele obținute prin simulare și a evalua erorile de estimare. Două dintre aceste legi sunt prezentate în continuare.

Teorema lui Bernoulli. Fie α numărul de apariții ale unui eveniment A în n experimente independente și p probabilitatea de apariție a lui A în fiecare dintre aceste experiențe. Dacă f_n este frecvența relativă definită prin egalitatea $f_n = \alpha/n$, atunci șirul de variabile aleatoare $\{f_n\}_{n\in\mathbb{N}}$ converge în probabilitate la p, adică

$$\lim_{n \to \infty} P[|f_n - p| \ge \varepsilon] = 0.$$
 (BT7.2.32)

Din punct de vedere practic, această teoremă arată că probabilitatea de apariție a evenimentului A poate fi aproximată oricât de bine prin frecvența relativă determinată exeprimental atunci când numărul n de experimente efectuate este suficient de mare.

Legea numerelor mari. Fie variabilele aleatoare independente $X_1, X_2, ..., X_n$, având aceeași distribuție de probabilitate, cu valoarea medie $\mu = M[X_k]$ și dispersia $\sigma^2 = Var[X_k]$ (finite). Considerând variabila aleatoare $S_n = X_1 + X_2 + ... + X_n$, pentru orice $\varepsilon > 0$ este satisfăcută relația:

$$\lim_{n \to \infty} P\left[\left| \frac{S_n}{n} - \mu \right| \ge \varepsilon \right] = 0.$$
 (BT7.2.33)

		Tab. BT7.2.1. Distribuții uzu	uale de proba	bilitate		
Numele distribuției	Simbol	Densitate de probabilitate	Parametri	Valoare medie	Varianță	Domeniul valorilor variabilei aleatoare
Uniformă discretă	$oldsymbol{U}_{d}(N)$	$f(n) = \frac{1}{N}, n \in \{1, 2,, N\}$	$N\in \mathbb{N}^*$	$\frac{N+1}{2}$	$\frac{N^2-1}{12}$	$X \in \{1, 2,, N\}$
Geometrică	${oldsymbol G}_{d}(p)$	$f(n) = p(1-p)^{n-1}, n \in \mathbb{N}^*$	$p \in (0,1)$	$\frac{1-p}{p}$	$rac{1-p}{p^2}$	$X \in \mathbb{N}^*$
Poisson	$P(\lambda)$	$f(n) = \frac{\lambda^n}{n!} \mathrm{e}^{-\lambda}, \ n \in \mathbb{N}^*$	$\lambda > 0$	r	r	$X \in \mathbb{N}^*$
Binomială	Bin(p, N)	$f(k) = C_N^k p^k (1-p)^{N-k}, k \in \{0,1,2,,N\}$	$p \in (0, 1)$, $N \in \mathbb{N}^*$	$\frac{N}{N}$	$rac{Np}{1-p}$	$X \in \{0, 1, 2,, N\}$
Uniformă continuă	U(a,b)	$f(x) = \frac{1}{b-a}, x \in [a,b]$	$a, b \in \mathbb{R}$, a < b	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$X \in [a, b]$
Exponențială	$oldsymbol{E}(\lambda)$	$f(x) = \lambda \mathrm{e}^{-\lambda x}, \ x \ge 0$	$\lambda > 0$	$rac{1}{\lambda}$	$rac{1}{\lambda^2}$	$X \in [0, +\infty)$
Normală	$N(\mu,\sigma)$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, x \in \mathbb{R}$	$\mu \in \mathbb{R}, \ \sigma > 0$	μ	σ^{2}	$X \in \mathbb{R}$
Gamma	G(lpha,eta)	$f(x) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{-\frac{x}{\beta}}, x \ge 0$	$\alpha, \beta > 0$	$\alpha\beta$	$lphaeta^2$	$X \in [0, +\infty)$
Erlang	Er(k,eta)	$f(x) = \frac{1}{\beta^{k} (k-1)!} x^{k-1} e^{-\frac{x}{\beta}}, x \ge 0$	$k \in \mathbb{N}^*$, $\beta > 0$	$k\beta$	$k \beta^2$	$X \in [0, +\infty)$
$\chi^{^2}$	$\chi^{2}(u)$	$f(x) = \frac{1}{2^{\nu/2} \Gamma(\nu/2)} x^{\frac{\nu-2}{2}} e^{-\frac{x}{2}}, x \ge 0$	$\mathcal{V}\in\mathbb{N}^{*}$	7	2v	$X \in [0, +\infty)$
Beta	$oldsymbol{B}(lpha,eta)$	$f(x) = \frac{1}{B(\beta, \alpha)} x^{\beta^{-1}} (1 - x)^{\alpha^{-1}}, x \in [0, 1]$	$\alpha, \beta > 0$	$\frac{\beta}{\alpha+\beta}$	$\frac{\alpha\beta(\alpha+\beta)^{-2}}{(\alpha+\beta+1)}$	$X \in [0,1]$

Din punct de vedere practic, această lege arată că valoarea medie μ a unei variabile aleatoare X poate fi aproximată oricât de bine prin media aritmetică a unui număr *n* suficient de mare de realizări (experimentale) ale acesteia, $X_1, X_2, ..., X_n$.

BT7.2.6. Distribuții frecvent folosite în temporizarea stohastică

Tabelul BT7.2.1 prezintă sumar câteva dintre distribuțiile de probabilitate frecvent întâlnite în probleme de modelare a sistemelor dinamice cu evenimente discrete, împreună cu caracteristicile acestora.

BT7.3. Procese stohastice

Un proces stohastic X (eng: stochastic process) reprezintă o familie de variabile aleatoare definite pe un câmp de probabilitate (Ω, \mathbb{E}, P) indexate după un parametru $t \in \mathbb{T}$ (care, de regulă, are semnificația de timp), $X: \mathbb{T} \times \Omega \to \mathbb{R}$. Pentru $t \in \mathbb{T}$ fixat, $X_t(\omega)$ este o variabilă aleatoare, $X_t: \Omega \to \mathbb{R}$, numită *eşantion* (eng. *sample*) al procesului stohastic. Pentru $\omega \in \Omega$ fixat se obține o funcție definită pe \mathbb{T} , numită *realizare* sau *traiectorie* (eng. *sample path*) a procesului stohastic. Mulțimea tuturor valorilor posibile ale unui proces stohastic, $S = \{X_t(\omega) | t \in \mathbb{T}, \omega \in \Omega\}$, se numește *spațiul stărilor* (eng. *state space*) procesului respectiv.

Procesele stohastice pot fi clasificate după natura discretă sau continuă a spațiului stărilor și a spațiului parametrilor. Procesele stohastice pentru care spațiul stărilor este discret (mulțime finită sau numărabilă) se numesc *lanțuri* (eng. *chain*). Dacă mulțimea \mathbb{T} pe care este definită variabila temporală *t* este discretă se spune că procesul stohastic $\{X(t)\}$ este *discret în timp* (eng. *discrete-time stochastic process*); în acest caz se consideră $\mathbb{T}=\{0,1,2,...\}\subseteq\mathbb{N}$ iar procesul stohastic discret este notat $\{X_k\}$, k=0,1,2,... Un proces stohastic pentru care $\mathbb{T}=\mathbb{R}_+$ este referit drept proces stohastic *continuu în timp* (eng. *continuous-time stochastic process*).

Pentru orice $t \in \mathbb{T}$, *funcția de repartiție* a procesului stohastic X se definește ca fiind funcția de repartiție a variabilei aleatoare X_t :

$$P_X(x,t) = P[X_t < x], \quad x \in \mathbb{R}, \ t \in \mathbb{T}.$$
 (BT7.3.1)

Similar se definește *densitatea de repartiție* a procesului stohastic X ca reprezentând densitatea de repartiție a variabilei aleatoare X_t , pentru orice $t \in \mathbb{T}$.

Valoarea medie a unui proces stohastic X este funcția $m_X(t)$ care, pentru fiecare moment $t \in \mathbb{T}$, reprezintă valoarea medie a variabilei aleatoare X_t :

$$m_X : \mathbb{T} \to \mathbb{R}, \ m_X(t) = M[X_t], \ t \in \mathbb{T}.$$
 (BT7.3.2)

Funcția de autocorelație a procesului stohastic X este funcția de două argumente $R_X(t,t')$ egală cu covarianța variabilelor aleatoare X_t și $X_{t'}$

$$R_X : \mathbb{T} \times \mathbb{T} \to \mathbb{R}, \ R_X(t, t') = \operatorname{Cov}[X_t, X_{t'}], \ t, t' \in \mathbb{T}.$$
(BT7.3.3)

Un proces stohastic se numește *staționar* (eng. *stationary*) dacă funcția de repartiție a procesului stohastic $X_t(\omega)$ coincide cu funcția de repartiție a procesului $X_{t+\tau}(\omega)$, pentru orice $t, \tau \in \mathbb{T}$, adică

$$P_{X}(x,t) = P_{X}(x,t+\tau), \quad \forall x \in \mathbb{R}, \quad t,\tau \in \mathbb{T}.$$
(BT7.3.4)

Dacă un proces stohastic este staționar, atunci funcția sa de repartiție și, implicit, densitatea de repartiție, sunt independente de timp. De asemenea, pentru un proces stohastic staționar, valoarea medie este constantă iar funcția de corelație depinde numai de diferența dintre argumentele sale, $R_X(t,t') = R_X(\tau)$, cu $\tau = t'-t$, fiind o funcție pară, $R_X(\tau) = R_X(-\tau)$.

Un proces stohastic staționar se numește *ergodic* (eng. *ergodic*) în cazul în care caracteristicile sale m_X și $R_X(\tau)$ pot fi definite drept valori medii corespunzătoare unei singure realizări de pe o durată de timp suficient de mare. Orice realizare pe o durată de timp suficient de mare a unui proces stohastic staționar și ergodic poate fi utilizată pentru caracterizarea procesului însuși.

BT7.4. Modele de tip rețea Petri cu temporizare stohastică

În general, modelarea unui sistem fizic printr-o rețea Petri cu temporizare stohastică se realizează în scopul evaluării performanțelor de regim permanent ale sistemului, presupunând că se poate estima "comportarea medie" a sistemului pe baza observării (simulării) modelului pe un interval de timp suficient de lung. Această presupunere implică ipoteza ergodicității modelului: la limită, atunci când intervalul de observare (simulare) tinde la infinit, estimările valorilor medii ale indicilor de performanță studiați (de interes) tind aproape sigur la valorile medii teoretice.

Astfel, performanțele sistemului fizic se pot estima pe baza analizei a două procese stohastice asociate modelului de tip rețea Petri cu temporizare stohastică, și anume procesul de executare a tranzițiilor și cel de marcaj. De regulă, se presupune că aceste două procese stohastice sunt ergodice, astfel încât pe baza modelelor de tip rețea Petri cu temporizare stohastică se pot analiza performanțele sistemelor fizice modelate (gradele de utilizare a resurselor, număr mediu de clienți serviți în unitatea de timp, duratele medii ale ciclurilor de producție, etc.). Fiecare din aplicațiile **AP7.1** – **AP7.5** ilustrează aceste aspecte.

Aplicații

AP7.1.

Fie un server care servește două tipuri de clienți în paralel, modelat prin rețeaua Petri cu temporizare T stohastică din fig. AP7.1.1. Servirea primului tip de clienți este modelată de subrețeaua din partea stângă a figurii (cu nodurile p_1 , t_1 , p_2 , t_2), iar servirea celui de-al doilea tip de clienți de subrețeaua din partea dreaptă a figurii (cu nodurile p_1 , t_3 , p_3 , t_4). Durata de

timp asignată tranziției t_i , $i = \overline{1,4}$, are distribuție exponențială cu rata λ_i [unități de timp⁻¹]. Se consideră următoarele valori numerice: $\lambda_1 = \lambda_4 = 1$, $\lambda_2 = \lambda_3 = 10$.

Pentru fiecare din situațiile de mai jos să se determine, prin simulare în mediul *Petri Net Toolbox*, numărul de clienți de fiecare tip serviți complet într-un interval de timp de 10.000 [unități de timp]:

- (i) probabilitea de servire a primului tip de clienți este egală cu probabilitea de servire a celui de-al doilea tip de clienți;
- (ii) probabilitea de servire a primului tip de clienți este 30%, iar probabilitea de servire a celui de-al doilea tip de clienți este 70%.

Fig. AP7.1.1. Reprezentarea grafică a rețelei Petri cu temporizare T studiată în AP7.1.

<u>Soluție</u>

Pentru a modela cele două situații indicate în enunț, probabilitățile de servire corespunzătoare celor două tipuri de clienți se asociază tranzițiilor t_1 și t_3 (aflate în conflict).

(i). Rezultatele obținute în urma simulării funcționării sistemului timp de 10.000 [unități de timp] sunt prezentate în fig. AP7.1.2 pentru cazul în care probabilitatea de servire a primului tip de clienți este egală cu probabilitatea de servire a celui de-al doilea tip de clienți. Numărul de clienți de primul tip serviți complet este dat de indicatorul *Service Sum* pentru tranziția t_2 (având valoarea 4.578), iar numărul de clienți de al doilea tip serviți complet este dat de indicatorul *Service Sum* pentru tranziția t_4 (având valoarea 4.564). Se observă că, în acest caz, au fost serviți aproximativ același număr de clienți din fiecare tip.

(ii). Pentru cazul în care probabilitatea de servire a primului tip de clienți este 30% și probabilitatea de servire a celui de-al doilea tip de clienți este 70%, rezultatele obținute în urma simulării funcționării sistemului timp de 10.000 [unități de timp] sunt prezentate în fig. AP7.1.3. Numărul de clienți din primul tip serviți complet este 2.773, iar numărul de clienți din al doilea tip serviți complet este 6.392. Se observă că, așa cum era de așteptat, raportul dintre cele două numere este aproximativ egal cu raportul dintre probabilitățile de servire.

140 — Aplicații ale rețelelor Petri – O. Păstrăvanu, M. Matcovschi, C. Mahulea

👺 Petri Net Toolbox -	Web Browser	Statistics	: Transi	tions	_ 🗆 >					
Model:an71i yml	orobart		. manor							
Events: 18285										
Time:10001.3162										
Transition Name	Service Sum	Service Rate	Service Dist.	Service Time	Utilization					
t1	4579	0.45784	2.1842	0.9919	0.45413					
t2	4578	0.45788	2.184	0.10132	0.04639					
t3	4564	0.45648	2.1907	0.099655	0.04549					
t4	4564	0.4564	2.1911	0.9949	0.45408					
		Ok	Save							

Fig. AP7.1.2. Indicatorii globali pentru tranzițiile rețelei Petri din fig. AP7.1.1 cu probabilități egale de executare a tranzițiilor t₁ și t₃.

Ś	Petri Net Toolbox -	Web Browser				<u>_ 0 ×</u>				
		Global \$	Statistics	: Transi	tions					
N	fodel:ap71ii.xml									
E	vents: 18331									
Т	Time:10000.8639									
	Transition Name	Service Sum	Service Rate	Service Dist.	Service Time	Utilization				
	t1	2774	0.27738	3.6052	0.98214	0.27242				
	t2	2773	0.27748	3.6038	0.10281	0.028529				
	t3	6392	0.63934	1.5641	0.099939	0.063896				
	t4	6392	0.63927	1.5643	0.99382	0.63532				
-			Ok	Save						

Fig. AP7.1.3. Indicatorii globali pentru tranzițiile rețelei Petri din fig. AP7.1.1 cu probabilități diferite de executare a tranzițiilor t₁ (30%) și t₃ (70%).

<u>Observație</u>: Rețeaua Petri din fig. AP7.1.1 cu temporizarea stohastică *T* considerată, modelează funcționarea unui server partajat paralel în cazul când fiecare client necesită două operații de servire consecutive (servirea fiecărui client se realizează în două faze). La aceleași rezultate s-ar fi ajuns dacă am fi utilizat modelul cu temporizare *P* din fig. AP7.1.4, în care duratele de timp asignate pozițiilor p_2 , p_3 , p_4 și p_5 au distribuție exponențială cu ratele $\mu_2 = \mu_5 = 1$, respectiv $\mu_3 = \mu_4 = 10$ [unități de timp⁻¹] (adică aceleași valori ce au fost considerate pentru temporizarea stohastică de tip *T* a rețelei din fig. AP7.1.1).

Fig. AP7.1.4. Rețeaua Petri cu temporizare P asociată celei din fig. AP7.1.1.

Așa cum era de așteptat, valorile indicatorilor globali referitori la pozițiile temporizate stochastic (fig. AP7.1.5) furnizează aceleași informații ca și indicatorii globali referitori la tranzițiile temporizate stochastic (fig. AP7.1.2). De exemplu, numărul de clienți de primul tip serviți complet este dat acum de indicatorul *Throughput Sum* pentru poziția p_3 (având valoarea 4.525), iar numărul de clienți de al doilea tip serviți complet este dat de indicatorul *Throughput Sum* pentru poziția p_5 (având valoarea 4.561).

2	Petri Ne	t Toolbox	- Web Bro	wser								
				Glo	bal Stati	stics: Pla	aces					
R	lodel :a	р7_1_р.х	ml									
E	Events :27260											
T	Time:10000.0266											
	Place Name	Arrival Sum	Arrival Rate	Arrival Dist.	Throughput Sum	Throughput Rate	Throughput Dist.	Waiting Time	Queue Length			
L	p1	9086	0.9086	1.1006	9087	0.9088	1.1004	0	0			
L	p2	4526	0.4526	2.2095	4526	0.4526	2.2095	0.99685	0.45117			
L	рЗ	4526	0.4526	2.2095	4525	0.45271	2.2089	0.099727	0.045126			
L	p4	4561	0.4561	2.1925	4561	0.45615	2.1923	0.098682	0.045009			
	р5	4561	0.4561	2.1925	4561	0.45615	2.1923	1.0057	0.45869			
					Ok	Save						

Fig. AP7.1.5. Indicatorii globali pentru pozițiile rețelei Petri din fig. AP7.1.4 cu probabilități egale de executare a tranzițiilor t₁ și t₃.

AP7.2.

142 -

Se consideră sistemul de fabricație din fig. AP7.2.1, alcătuit dintr-un robot R care servește, partajat, mașinile identice M_1 și M_2 , în scopul încărcării acestora. Ambele mașini se descarcă automat. Robotul rămâne alocat până la finalizarea prelucrării unei piese pe oricare din mașini pentru a menține fixată piesa respectivă pe mașina care efectuează prelucrarea. Pe M_1 se prelucrează piese de tipul 1 dintr-un lot L_1 , pentru care durata de încărcare cu ajutorul lui R este uniform distribuită între 2 și 4 minute, iar durata de prelucrare (incluzând eliberarea lui M_1 și R) este uniform distribuită între 8 și 12 minute. În mod similar, pe M_2 se prelucrează piese de tipul 2 dintr-un lot L_2 , pentru care durata de încărcare cu R este uniform distribuită între 3 și 7 minute, iar durata de prelucrare (incluzând eliberarea lui M_2 și R) este uniform distribuită între 17 și 25 minute.

Se consideră că există un număr suficient de mare de piese din ambele tipuri și că robotul va proceda la încărcarea unei noi piese neprelucrate de îndată ce este liber. Pentru robot nu există nici un mecanism de alegere preferențială a tipului de piesă pe care îl încarcă (din lotul L_1 sau L_2), cele două tipuri de piese având probabilitățile egale de servire.

Fig. AP7.2.1. Sistemul flexibil de fabricație utilizat în AP7.2.

- 1. Să se construiască rețeaua Petri cu temporizare stohastică de tip T care modelează funcționarea fluxului tehnologic, în conformitate cu descrierea de mai sus.
- 2. Să se utilizeze modelul construit la punctul 1 pentru analiza în mediul *Petri Net Toolbox* a funcționării fluxului tehnologic pe un interval de timp de 2.000 ore, precizând următoarele elemente caracteristice:
 - 1. numărul de piese prelucrate pe M_1 și respectiv pe M_2 ;
 - 2. timpul mediu necesar procesării unei piese din L_1 respectiv L_2 de la începutul transportului cu R a piesei brute, până la descărcarea automată a piesei finite;
 - 3. gradul de utilizare a maşinilor M_1 şi M_2 ;
 - 4. gradul de utilizare a robotului R.

<u>Soluție</u>

1. Modelul de tip rețea Petri, cu temporizare stohastică de tip *T*, care modelează funcționarea sistemului de fabricație investigat este prezentat în fig. AP7.2.1. Tranzițiile t_2 și t_3 modelează operațiile de încărcare a unei piese din lotul L₁ pe mașina M₁, respectiv de prelucrare a piesei pe această mașină. Similar, pentru o piesă din lotul L₂, tranzițiile t_5 și t_6 modelează operațiile de încărcare pe mașina M₂, respectiv de prelucrare a piesei pe această mașină. Drept urmare a

acestor semnificații fizice, duratele de timp asignate acestor tranziții sunt precizate sub forma distribuțiilor uniforme din enunț. Tranzițiile t_1 și t_4 modelează alegerea tipului de piesă ce va fi încărcată pe una dintre mașini (care nu necesită temporizare, desfășurându-se instantaneu). Tranzițiilor t_1 și t_4 li se alocă probabilități egale de executare.

Fig. AP7.2.2. Modelul de tip rețea Petri al sistemului de fabricație din fig. AP7.2.1.

2. Prin simularea în mediul *Petri Net Toolbox* a funcționării sistemului de fabricație pe o durată de 2.000 ore se obțin indicatorii globali (referitori la tranzițiile și pozițiile modelului) care sunt prezentați în fig. AP7.2.3.

Pe baza acestor indicatori se obțin următoarele performanțe ale sistemului de fabricație:

- (i) numărul de piese prelucrate complet
 - pe maşina M_1 : *Service Sum*(t_3) = 3.085,
 - pe maşina M_2 : *Service Sum*(t_6) = 3.0853.068;
- (ii) timpul mediu necesar procesării unei piese
 - din lotul L₁: *Service Time*(t_2) + *Service Time*(t_3) = 13 min.,
 - din lotul L₂: *Service Time*(t_5) + *Service Time*(t_6) = 26 min.;
- (iii) gradul de utilizare
 - a maşinii M_1 : 1 *Queue Length*(M1) = *Utilization*(t_2) + *Utilization*(t_3) = 0.335,
 - a maşinii M₂: $1 Queue Length(M2) = Utilization(t_5) + Utilization(t_6) = 0.665;$
- (iv) gradul de utilizare a robotului R: 1 Queue Length(R) = 1.

Cititorului i se sugerează să compare analiza de mai sus cu situația când rețeaua Petri din fig. AP7.2.2 ar fi cu temporizare T deterministă, tranzițiilor t_2 , t_3 , t_5 și t_6 fiindu-le asignate (corespunzător) valorile medii ale distribuțiilor uniforme menționate în enunț.

👹 Petri Net Toolbox	- Web Browser				-D×				
((Global S	statistics	s: Trans	itions					
Model:ap72.xml									
Events :18459									
Time:120004.8145									
Transition Name	Service Sum	Service Rate	Service Dist.	Service Time	Utilization				
t1	3085	0.025711	38.8944	0	0				
t2	3085	0.02571	38.8957	3.0163	0.07755				
t3	3085	0.025707	38.8995	9.9997	0.25707				
t4	3068	0.02558	39.0928	0	0				
t5	3068	0.025579	39.0948	5.0193	0.12839				
t6	3068	0.025575	39.101	21.0075	0.53726				
		Ok	Save						

(a)

😹 Petri Net Toolbox - Web Browser

- D ×

Global Statistics: Places

Model:ap72.xml

144 —

Events: 18459

Time: 120004.8145

Place Name	Arrival Sum	Arrival Rate	Arrival Dist.	Throughput Sum	Throughput Rate	Throughput Dist.	Waiting Time	Queue Length
M1	3085	0.025707	38.8995	3085	0.025711	38.8944	25.8834	0.66539
L1	3085	0.025707	38.8995	3085	0.025711	38.8944	3.0163	0.077542
P1	3085	0.025707	38.8995	3085	0.02571	38.8957	9.9997	0.25707
M2	3068	0.025566	39.115	3068	0.025568	39.1112	13.0882	0.33461
L2	3068	0.025566	39.115	3068	0.02558	39.0928	5.0193	0.12832
P2	3068	0.025566	39.115	3068	0.025579	39.0948	21.0075	0.53707
R	6153	0.051273	19.5035	6153	0.05128	19.5009	0	0
				Ok	Save			

(b)

Fig. AP7.2.3. *Indicatorii globali pentru* (a) *tranzițiile și* (b) *pozițiile rețelei Petri din fig. AP7.2.2.*

- 145

AP7.3.

Ne plasăm în contextul sistemului de fabricație al cărui model a fost construit la AP4.2 punctul 1.(i). Duratele activităților desfășurate în sistemul de fabricație, exprimate în unități de timp, au distribuții uniforme după cum urmează: d_{M1} în intervalul [35, 45], d_{M2} în intervalul [80, 90] pentru procesarea pe M₁, respectiv M₂ și d_{R1} în intervalul [15, 25], d_{R2} în intervalul [15, 25] pentru descărcarea cu ajutorul lui R a lui M₁, respectiv M₂. Timpul necesitat de eliberarea resurselor M₁, M₂ și respectiv R este considerat neglijabil. Timpul necesitat de eliberarea unei palete d_p este uniform distribuit în intervalul [18, 22].

- 1. Funcționarea sistemului de fabricație este modelată de o rețea Petri cu temporizare P stohastică. Să se precizeze cum poate fi obținut acest model pornind de la rețeaua Petri netemporizată reprezentată în fig. AP4.2.4.
- 2. Să se utilizeze modelul construit la punctul 1 pentru analiza în mediul Petri Net Toolbox a funcționării sistemului pe un interval de timp corespunzător prelucrării complete a 10.000 de piese, precizând:
 - (i) durata medie necesară fabricării unui produs finit;
 - (ii) gradul de utilizare a robotului R;
 - (iii) gradul de utilizare a masinilor M_1 si M_2

ml		Glo	bal Statis	tics: Place	s		
ml							
758							
Arrival Sum	Arrival Rate	Arrival Dist.	Throughput Sum	Throughput Rate	Throughput Dist.	Waiting Time	Queue Length
10002	0.010403	96.1238	10002	0.010404	96.1198	42.8941	0.44624
10002	0.010403	96.1238	10002	0.010403	96.1222	19.9702	0.20775
10002	0.010403	96.1238	10001	0.010402	96.1334	89.4887	0.93088
10001	0.010402	96.1334	10000	0.010401	96.143	96.1365	0.99993
10000	0.010401	96.143	10000	0.010401	96.143	19.9186	0.20718
10000	0.010401	96.143	10002	0.010404	96.116	19.9952	0.20802
10002	0.010403	96.1238	10002	0.010403	96.1238	53.2296	0.55376
10001	0.010402	96.1334	10002	0.010403	96.1238	102.7677	1.0691
10000	0.010401	96.143	10001	0.010402	96.1319	0.0064688	6.7289e-005
00000	0.020904	48.0667	20002	0.020805	49.0659	20 1222	0.58507
	758 Arrival Sum 10002 10002 10001 10000 10000 10000 10002 10001 10000 1000 1000 1000 1000 1000 100 100 100 100 100 100 100 100 100 100 10	Arrival Sum Arrival Rate 10002 0.010403 10002 0.010403 10002 0.010403 10001 0.010402 10000 0.010401 10001 0.010403 10002 0.010401 10003 0.010401 10004 0.010403 10005 0.010403 10006 0.010403 10001 0.010402	Arrival Sum Arrival Rate Arrival Dist. 10002 0.010403 96.1238 10002 0.010403 96.1238 10002 0.010403 96.1238 10002 0.010403 96.1238 10001 0.010403 96.1334 10000 0.010401 96.143 10000 0.010403 96.1238 10000 0.010401 96.143 10002 0.010403 96.1238 10001 0.010403 96.1238 10002 0.010403 96.1334 10002 0.010403 96.1334	Arrival Sum Arrival Rate Arrival Dist. Throughput Sum 10002 0.010403 96.1238 10002 10002 0.010403 96.1238 10002 10002 0.010403 96.1238 10002 10002 0.010403 96.1238 10002 10001 0.010402 96.1334 10000 10000 0.010401 96.1433 10002 10000 0.010401 96.1434 10002 10001 0.010402 96.1334 10002 10001 0.010403 96.1334 10002 10002 0.010403 96.1334 10002	Arrival Sum Arrival Rate Arrival Dist. Throughput Sum Throughput Rate 10002 0.010403 96.1238 10002 0.010404 10002 0.010403 96.1238 10002 0.010403 10002 0.010403 96.1238 10002 0.010403 10002 0.010403 96.1238 10001 0.010402 10001 0.010403 96.1334 10001 0.010401 10000 0.010401 96.143 10002 0.010401 10000 0.010401 96.143 10002 0.010404 10000 0.010401 96.1334 10002 0.010404 10001 0.010403 96.1334 10002 0.010403 10002 0.010403 96.1334 10002 0.010403 10001 0.010402 96.1334 10002 0.010403 10001 0.010401 96.1334 10002 0.010403	758Arrival SumArrival RateArrival Dist.Throughput SumThroughput RateThroughput Dist.100020.01040396.1238100020.01040496.1198100020.01040396.1238100020.01040396.1222100020.01040396.1238100010.01040296.1334100010.01040296.1334100000.01040196.143100000.01040196.143100020.01040196.143100000.01040196.1238100020.01040396.1238100010.01040396.1238100020.01040396.1238100010.01040196.1334100020.01040396.1238100010.01040196.1334100020.01040396.1238100010.01040396.1238100020.01040396.1238100010.01040196.1334100020.01040396.1238100010.01040196.1334100020.01040396.1238	Arrival SumArrival Dist.Arrival Dist.Throughput SumThroughput RateThroughput Dist.Waiting Time100020.01040396.1238100020.01040496.119842.8941100020.01040396.1238100020.01040396.122219.9702100020.01040396.1238100010.01040296.133489.4887100010.01040296.1334100000.01040196.14396.1365100000.01040196.143100000.01040196.14319.9186100010.01040196.143100020.01040496.11619.9952100020.01040396.1238100020.01040396.123853.2296100010.01040496.1344100020.01040396.1238102.7677100000.01040196.143100010.01040296.13190.0064688

1. Modelul de tip rețea Petri netemporizată pentru structura de conducere SC1 este prezentat în fig. AP4.2.4. Pentru obținerea modelului temporizat, distribuțiile corespunzătoare duratelor de timp ale activităților (d_{M1} , d_{M2} , d_{R1} și d_{R2}) se asignează pozițiilor care modelează operațiile (PM1, PM2, TR1 și, respectiv, TR2). Distribuția corespunzătoare duratei de eliberare a unei palete, d_p , se asignează poziției care modelează disponibilitatea paletelor (P).

2. Prin simularea în mediul *Petri Net Toolbox* a funcționării sistemului de fabricație pe o durată corespunzătoare prelucrării complete a 10.000 de piese se obțin indicatorii globali (referitori la pozițiile modelului) prezentați în fig. AP7.3.1.

Pe baza informațiilor din fig. AP7.3.1 se pot determina următoarele performanțe:

- (i) durata medie necesară fabricării unui produs finit: *Arrival Distance*(P) = 96,16 [unități de timp];
- (ii) gradul de utilizare a robotului R: 1 Queue Length(R) = Queue Length(TR1) + Queue Length(TR2) = 0,415;
- (iii) gradul de utilizare al maşinilor:
 - pentru M₁: 1 Queue Length(M1) = Queue Length(PM1) = 0,999,
 - pentru M₂: 1 Queue Length(M2) = Queue Length(PM2) = 0,446.

AP7.4.

Ne plasăm în contextul sistemului de fabricație al cărui model, notat SC1, a fost construit la **AP4.2** punctul 1.(i). Duratele activităților desfășurate în sistemul de fabricație, exprimate în unități de timp, sunt $d_{M1} = 40$, $d_{M2} = 85$ pentru procesarea pe M₁, respectiv M₂, și $d_{R1} = 20$, $d_{R2} = 20$ pentru descărcarea cu ajutorul lui R a lui M₁, respectiv M₂. Timpul necesitat de eliberarea resurselor M₁, M₂ și respectiv R este considerat neglijabil.

Se consideră că durata necesară eliberării paletelor d_P are distribuție exponențială de medie μ ajustabilă în intervalul [20, 30] unități de timp. Folosind meniul **Design** al mediului **Petri Net Toolbox** și considerând un timp de funcționare de 50.000 unități de timp, să se reprezinte grafic, în funcție de valoarea μ , următoarele caracteristici ale sistemului de fabricatie:

- (i) durata medie necesară fabricării unui produs finit;
- (ii) durata medie de ocupare cu piesă a mașinii M₁;
- (iii) durata medie de ocupare cu piesă a mașinii M2.

<u>Soluție</u>

Se consideră modelul de tip rețea Petri temporizată P pentru care duratele operațiilor de prelucrare pe mașini și de transport au valorile constante indicate în enunț.

(i). Utilizând facilitatea **Design** oferită de mediul **Petri Net Toolbox** și considerând drept parametru valoarea medie μ a distribuției exponențiale asignate poziției care modelează disponibilitatea paletelor, se obține reprezentarea grafică din fig. AP7.4.1. Se constată că durata medie de prelucrare completă a unei piese se modifică foarte puțin atunci când μ ia valori în intervalul suficient de larg [20, 30]. Practic, variațiile sunt foarte mici, însemnând (89,6-89,2)/89,6=0,44%.

Fig. AP7.4.1. Evoluția duratei medii de fabricare a unei piese în funcție de μ .

În cadrul experimentului executat în raport cu parametrul μ , *Petri Net Toolbox* memorează toți indicatorii referitori la pozițiile și tranzițiile modelului analizat. Astfel, informațiile referitoare la durata medie de ocupare a mașinilor M₁, respectiv M₂, pot fi obținute direct, în aceeași fereastră, prin selectarea adecvată a indicatorului din câmpurile *Design Index* și *Design Node*.

Fig. AP7.4.2. Evoluția duratei medii de ocupare cu piesă a mașinii M_1 în funcție de μ .

(ii). Pentru dependența de μ a duratei medii de ocupare cu piesă a mașinii M₁ se obține reprezentarea grafică din fig. AP7.4.2. Se constată variații foarte mici ale acestui indicator, însemnând (42,56 – 42,38)/42,56=0,42%.

(iii). Pentru dependența de μ a duratei medii de ocupare cu piesă a mașinii M₂ se obține reprezentarea grafică din fig. AP7.4.3. Se constată variații foarte mici ale acestui indicator, însemnând (89,23 – 88,93)/89,23 = 0,33%.

Fig. AP7.4.3. Evoluția duratei medii de ocupare cu piesă a mașinii M_2 în funcție de μ .

<u>Observație</u>: Ca și în cazul **AP6.5**, remarcăm faptul că durata medie de ocupare cu piesă a mașinii M_1 și, respectiv M_2 , este mai mare decât timpul necesar prelucrării propriu-zise, diferența însemnând așteptarea piesei prelucrate pe mașină pentru efectuarea transportului executat de robotul partajat secvențial.

AP7.5.

Pentru sistemul de fabricație cu reprezentarea schematică din fig. AP3.6.1 și principiile de funcționare prezentate în **AP3.6**, se dorește o exploatare cât mai eficientă din punctul de vedere al duratei medii de fabricație a unui produs, în contextul detaliilor de funcționare prezentate mai jos.

Duratele operațiilor de prelucrare efectuate asupra unei piese, exprimate în unități de timp, au distribuții uniforme după cum urmează: d_{M1} în intervalul [35, 45] și d_{M2} în intervalul [80, 90] pentru procesarea pe M₁, respectiv M₂. Duratele operațiilor de transport, exprimate în unități de timp, au valorile $d_{R1} = 20$, $d_{R2} = 20$ pentru descărcarea cu ajutorul lui R a lui M₁, respectiv M₂. Timpul necesitat de eliberarea resurselor M₁, M₂ și respectiv R este considerat neglijabil.

Se consideră că numărul de palete utilizate pentru fixarea pieselor, notat *x*, este ajustabil între valorile 2 și 5. Evitarea apariției deadlock-ului se realizează prin utilizarea unei structuri de control de tip *kanban* (vezi BT4.2.2.4), care să monitorizeze numărul de clienți acceptați pentru toate activitățile dintre tranzițiile ce modelează începerea operațiilor deservite de resursa partajată secvențial (operațiile de transport desfășurate de robot).

Timpul necesitat de eliberarea unei palete, notat $d_{\rm P}$, este considerat constant și poate fi ales convenabil în intervalul [15, 40] [unități de timp].

- 1. În funcție de valorile parametrilor x și $d_{\rm P}$, să se reprezinte grafic următorii indicatori:
 - (i) durata medie necesară fabricării unui produs finit;
 - (ii) durata medie de ocupare cu piesă a mașinii M_1 ;
 - (iii) durata medie de ocupare cu piesă a mașinii M₂;
 - (iv) numărul mediu de piese din depozit.
- 2. Să se precizeze modul de alegere a parametrilor $x ext{ si } d_P$ pentru care se poate obține o valoare minimă pentru durata medie de fabricație a unui produs.

Soluție

1. Modelul utilizat pentru rezolvarea problemei este prezentat în fig. AP7.5.1, în care poziția K a fost introdusă pentru a modela activitatea kanban-ului.

Fig. AP7.5.1. Modelul utilizat în AP7.5.

Utilizând facilitatea **Design** oferită de mediul **Petri Net Toolbox** și considerând drept parametri numărul x de palete disponibile în sisten (care ia valorile discrete 2, 3, 4 și 5) și durata d_P de eliberarea unei palete (luând valori în intervalul [15, 40]), caracteristicile de funcționare investigate pot fi pot fi reprezentate grafic în aceeași fereastră ca suprafețe, prin selectarea adecvată a indicatorului din câmpurile **Design Index** și **Design Node**. Experimentele de simulare utilzate pentru construirea punctelor reprezentative de pe aceste suprafețe au fost efectuate pe durata de 50.000 [unități de timp].

Fig. AP7.5.2. Reprezentarea grafică a duratei medii necesare fabricării unui produs finit.

(ii). Pentru durata medie de ocupare cu piesă a mașinii M_1 se obține reprezentarea grafică din fig. AP7.5.3.

Fig. AP7.5.3. Reprezentarea grafică a duratei medii de ocupare cu piesă a mașinii M_1 .

(iii). Pentru durata medie de ocupare cu piesă a mașinii M_2 se obține reprezentarea grafică din fig. AP7.5.4.

Fig. AP7.5.4. Reprezentarea grafică a duratei medii de ocupare cu piesă a mașinii M_2 .

(iv). Pentru numărul mediu de piese din depozit se obține reprezentarea grafică din fig. AP7.5.5.

Fig. AP7.5.5. Reprezentarea grafică a numărului mediu de piese din depozit.

2. Din examinarea figurii AP7.5.2 rezultă că minimizarea duratei de fabricație a unui produs se pate realiza operând cu 3, 4 sau 5 palete. Dacă utilizăm 3 palete, valoarea minimă a duratei de fabricație este 85 [unități de timp] care se obține pentru durata de eliberare a unei palete $d_p \ge 35$ [unități de timp]. Pentru aceste valori cititorul este invitat să comenteze informațiile furnizate de fig. AP7.5.3 – AP7.5.5. În mod similar se tratează cazurile când în sistem sunt utilizate 4 sau 5 palete.

Capitolul 8

Modele de tip rețea Petri stohastică

Breviar teoretic

BT8.1. Rețele Petri stohastice

O rețea Petri se numește *stohastică* (eng. *stochastic Petri net* – *SPN*) dacă fiecărei tranziții t_i îi este asociată o variabilă aleatoare X_i de distribuție exponențială, care exprimă întârzierea din momentul validării până la executarea tranziției t_i . Spre deosebire de rețelele Petri cu temporizare T stohastică, dacă la un moment dat într-o rețea Petri stohastică mai multe tranziții sunt simultan validate, se va executa mai întâi acea tranziție care posedă întârzierea cea mai scurtă. Astfel, într-o SPN, nu are sens asignarea de probabilități sau priorități de executare pentru tranzițiile aflate în conflict.

Ținând cont de modul de funcționare al rețelelor Petri stohastice prezentat mai sus, într-o SPN, spre deosebire de o rețea Petri cu temporizare *T*, nu există marcaje rezervate. Problema alegerii următoarei tranziții care se va executa se pune de fiecare dată când marcajul rețelei stohastice se modifică. Conflictele se rezolvă în mod natural, prin generarea duratelor corespunzătoare tuturor tranzițiilor validate la momentul respectiv și selectarea acelei tranziții căreia îi corespunde cea mai mică durată.

Numai în cazul inexistenței conflictelor efective, se obține o echivalență comportamentală între rețelele Petri stohastică și între rețele Petri cu temporizare T stohastică. Cu alte cuvinte, diferențele care apar între dinamicele celor două tipuri de rețele provin tocmai din modalitățile de rezolvare a conflictelor ce pot apărea pentru rețele cu temporizare T stohastică (ilustrare în **AP8.1**).

Într-o rețea Petri stohastică rata de executare a unei tranziții t poate fi dependentă de marcaj în sensul următor. Dacă rata distribuției exponențiale asociată tranziției t este λ , atunci la un moment oarecare la care tranziția respectivă este q-validată, durata de executare a lui t se generează după o distribuție exponențială de rată $q\lambda$. Acest mecanism se utilizează, de exemplu, atunci când numărul de jetoane din pozițiile de intrare a lui t (adică ordinul de validare al lui t) reprezintă numărul de servere identice în paralel aflate în curs de servire a clienților, în ipoteza că duratele de servire pe toate serverele au aceeași distribuție de rată λ (eng. single-server versus multiple-server semantics).

Evoluția marcajului unei rețele Petri stohastice reprezintă un proces Markov omogen, astfel încât oricărei rețele de acest tip îi poate fi asociat un lanț Markov omogen. Pentru

studiul unei SPN, metodele de analiză a lanțurilor Markov (cunoscute din teoria sistemelor de așteptare) complementează metodele generale de analiză a rețelelor Petri. Rezultatele bazate pe invarianții de tip P sau T (prezentate pentru rețelele cu temporizare P sau T) pot fi extinse la cazul rețelelor Petri stohastice, pentru care se poate vorbi despre conservarea marcajului mediu și despre frecvența medie de executare a tranzițiilor în regim permanent.

BT8.2. Proprietăți ale legii de distribuție exponențială

Legea de *distribuție exponențială cu parametrul* $\lambda > 0$ caracterizează o variabilă aleatoare X (ce poate lua numai valori reale nenegative) a cărei funcție de repartiție este de forma:

$$F(t) = P[X \le t] = \begin{cases} 0 , \text{ pentru } t < 0, \\ 1 - e^{-\lambda t}, \text{ pentru } t \ge 0, \end{cases}$$
(BT8.2.1)

densitatea de repartiție fiind

$$f(t) = \begin{cases} 0 , \text{ pentru } t < 0, \\ \lambda e^{-\lambda t}, \text{ pentru } t \ge 0. \end{cases}$$
(BT8.2.2)

Deoarece valoarea medie a variabilei aleatoare este $M[X] = 1/\lambda$, parametrul λ poartă denumirea de *rată*. Dispersia variabilei aleatoare X este $Var[X] = 1/\lambda^2$.

Importanța distribuției exponențiale constă în faptul că aceasta este singura distribuție continuă de probabilitate care posedă proprietatea de *"lipsă de memorie"* (eng. *memoryless property*) exprimată matematic prin relația

$$P[X \le s + t \mid X > s] = P[X \le t], \quad \forall t, s \ge 0,$$
(BT8.2.3)

care rezultă din

$$P[X \le s+t \mid X > s] = 1 - P[X > s+t \mid X > s] = 1 - \frac{P[X > s+t, X > s]}{P[X > s]} = 1 - \frac{P[X > s+t]}{P[X > s]} = 1 - \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = 1 - e^{-\lambda t} = P[X \le t], \quad \forall t, s \ge 0.$$

Această proprietate are următoarea interpretare: fie X o variabilă aleatoare distribuită exponențial care reprezintă, de exemplu, timpul de servire a unui client de către un server. Presupunem că servirea clientului începe la momentul $t_0 = 0$. Dacă la momentul s > 0 nu a fost terminată servirea clientului, atunci probabilitatea ca servirea clientului să fie terminată până la momentul s+t este egală cu probabilitatea ca timpul total de servire sa fie mai mic decât t. Altfel spus, timpul de servire rezidual are distribuție exponențială cu aceeași rată ca și timpul de servire total.

O altă proprietate fundamentală a distribuției exponențiale este reprezentată de relația cu distribuția discretă Poisson. Dacă duratele dintre două apariții consecutive ale unui același tip de eveniment sunt variabile independente cu distribuție exponențială de rată λ , atunci numărul de evenimente care apar într-un intr-un interval de timp [0, t), t > 0, are distribuție Poisson de parametru $\alpha = \lambda t$, și reciproc.

La baza modului de executare a unei tranziții t a cărei rată este *dependentă de marcaj* stă proprietatea că, dacă $X_1, X_2, ..., X_n$ sunt variabile aleatoare independente distribuite

exponențial cu aceeași rată λ , atunci variabila min $\{X_1, X_2, ..., X_n\}$ este distribuită exponențial cu rata $n\lambda$, deoarece

$$P[\min\{X_1, X_2, ..., X_n\} \le t] = 1 - P[\min\{X_1, X_2, ..., X_n\} > t] =$$

= 1 - P[X_1 > t]P[X_2 > t]...P[X_n > t] = 1 - e^{-n\lambda t}, \quad \forall t \ge 0. (BT8.2.4)

Distribuția exponențială este utilizată pentru a modela procese care "*nu au memorie*", ca de exemplu duratele dintre sosirile clienților într-un sistem (eng. *interarrival times*), timpi de așteptare (dacă probabilitatea de a mai aștepta încă un interval de timp este independentă de timpul de așteptare scurs deja), duratele convorbirilor telefonice, timpul de viață al componentelor electronice.

BT8.3. Lanțuri Markov omogene, continue în timp

BT8.3.1. Concepte de bază

Procesele Markov reprezintă un tip particular de procese stohastice, a căror proprietate caracteristică este aceea că nu au memorie. Evoluția viitoare a unui proces Markov este influențată numai de starea curentă a acestuia. Dacă procesul Markov poate avea numai un număr finit sau numărabil de stări, atunci este denumit *lanț Markov* (eng. *Markov chain*). Lanțurile Markov constituie cel mai important exemplu de proces stohastic, studiul matematic al proceselor stohastice putând fi privit ca o generalizare într-un sens sau altul a teoriei lanțurilor Markov.

Un *lanț Markov în timp continuu* (eng. *continuous-time Markov chain* – CTMC) reprezintă un proces stohastic X având o mulțime finită ($S = \{1, 2, ..., n\} \subset \mathbb{N}^*$) sau numărabilă de stări ($S = \mathbb{N}^*$). Starea acestui proces este observată la momentele de timp (continuu) $t \in \mathbb{R}_+ = [0, +\infty)$, starea la momentul inițial $t_0 = 0$ fiind X(0). Pentru lanțurile Markov în timp continuu proprietatea caracteristică (de lipsă a memoriei) este precizată prin condiția

$$\forall r, s, t \in \mathbb{R}_+, \ 0 \le r \le s \le t,$$

$$P[X(t) = j | X(s) = i \text{ si } X(r) = k] = P[X(t) = j | X(s) = i] = p_{ii}(s, t), \ \forall i, j, k \in \mathcal{S}.$$
(BT8.3.1)

Funcțiile $p_{ij}(s,t)$ definite prin relația precedentă se numesc *funcții de tranziție de stare* (eng: *state transition functions*).

În continuare ne limităm la cazul lanțurilor Markov *omogene*, pentru care funcțiile de tranziție de stare depind numai de diferența dintre cele două momente de timp:

$$P[X(s+t) = j | X(s) = i] = P[X(t) = j | X(0) = i] \stackrel{not}{=} p_{ij}(t), \quad \forall s, t \ge 0, \quad \forall i, j \in S$$

și au proprietățile:

$$0 \le p_{ij}(t) \le 1, \quad \forall t \ge 0, \quad \forall i, j \in \mathcal{S}, \quad p_{ij}(0) = \delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \ne j \end{cases}$$

$$\sum_{j \in \mathcal{S}} p_{ij}(t) = 1, \quad \forall t \ge 0, \quad \forall i \in \mathcal{S}.$$
(BT8.3.2)

Funcțiile de tranziție de stare satisfac *ecuația Chapman-Kolmogorov* (fig. BT8.3.1): $p_{ij}(s+t) = \sum_{r \in S} p_{ir}(s)p_{rj}(t), \quad \forall s,t \ge 0, \ \forall i,j \in S.$ (BT8.3.3)

Matricea funcțiilor de tranziție de stare, definită prin $P(t) = [p_{ij}(t)], i, j = 1, 2, ...,$ are proprietatea că suma elementelor de pe fiecare linie este egală cu 1, $\sum_{i \in S} p_{ij}(t) = 1, \forall t \ge 0$, și:

$$\boldsymbol{P}(0) = \boldsymbol{I}, \quad \boldsymbol{P}(s+t) = \boldsymbol{P}(s) \cdot \boldsymbol{P}(t), \quad \forall s, t \ge 0.$$

Funcțiile de tranziție de stare sunt rareori utilizate în mod direct. De regulă, un lanț Markov în timp continuu este caracterizat prin *ratele tranzițiilor de stare* (eng: *state transition rates*). Matricea ratelor tranzițiilor de stare, notată $\mathbf{Q} = [q_{ij}], i, j = 1, 2, ...,$ este definită prin

$$\boldsymbol{Q} = \frac{d\boldsymbol{P}(t)}{dt}\Big|_{t=0} \quad \Leftrightarrow \quad \boldsymbol{q}_{ij} = \frac{d\boldsymbol{p}_{ij}(t)}{dt}\Big|_{t=0}, \quad (BT8.3.4)$$

și are proprietatea suma elementelor de pe fiecare linie este egală cu 0, $\sum_{j \in S} q_{ij} = 0$.

Din ecuația Chapman-Kolmogorov (BT8.3.3) rezultă că matricea funcțiilor de tranziție de stare satisface problema Cauchy

$$\begin{cases} \frac{d\boldsymbol{P}(t)}{dt} = \boldsymbol{P}(t) \cdot \boldsymbol{Q}, & t \ge 0\\ \boldsymbol{P}(0) = \boldsymbol{I} \end{cases}$$
(BT8.3.5)

care admite soluție unică

$$\boldsymbol{P}(t) = \exp(\boldsymbol{Q}t), \quad t \ge 0, \tag{BT8.3.6}$$

unde $\exp(\mathbf{Q}t)$ notează exponențiala matricei $\mathbf{Q}t$, fiind definită prin:

$$\exp(\mathbf{Q}t) \stackrel{\text{def}}{=} \sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{Q}^{k} t^{k} = \mathbf{I} + \frac{1}{1!} \mathbf{Q}t + \frac{1}{2!} \mathbf{Q}^{2} t^{2} + \dots$$
(BT8.3.7)

Pentru orice stare $i \in S$ timpul cât procesul stohastic rămâne în starea *i* după ce a ajuns în această stare, notat V(i), se numește *timp de ocupare a stării* (eng: *state holding time*) (fig. BT8.3.2) și este o variabilă aleatoare continuă cu distribuție exponențială de rată $\Lambda(i) = -q_{ii} = \sum_{i \in S, i \neq i} q_{ij} > 0$,

$$P[V(i) \le t] = 1 - e^{-A(i)t}, \quad \forall t \ge 0.$$
 (BT8.3.8)

Rezultă că timpul mediu de ocupare a stării *i* este $M[V(i)] = 1/\Lambda(i)$. De asemenea, timpul de ocupare a stării *i*, V(i) este independent de starea în care va trece procesul la tranziția **din** starea *i* (nu depinde de următoarea stare vizitată).

BT8.3.2. Analiza tranzițiilor de stare a unui lanț Markov continuu și omogen

Unul din obiectivele principale în analiza unui lanț Markov în timp continuu este determinarea probabilității ca lanțul să se găsească într-o anumită stare la un moment dat. Se definesc *probabilitățile de stare*:

$$\pi_i(t) = P[X(t) = i], \quad t \ge 0, \quad \forall i \in \mathcal{S},$$
(BT8.3.9)

cu ajutorul cărora se formează vectorul linie $\pi(t) = [\pi_1(t), \pi_2(t),...], t \ge 0$. Distribuția de probabilitate a stării inițiale a lanțului este $\pi(0) = [\pi_1(0), \pi_2(0),...]$.

Aplicând ecuația Chapman-Kolmogorov se obține

$$\pi_{j}(t) = P[X(t) = j] = \sum_{i \in S} P[X(t) = j | X(0) = i] \cdot P[X(0) = i] =$$

= $\sum_{i \in S} \pi_{i}(0) \cdot p_{ij}(t), \quad \forall j \in S,$
(BT8.3.10)

relație echivalentă cu

$$\pi(t) = \pi(0) \cdot P(t), t \ge 0,$$
 (BT8.3.11)

de unde rezultă

$$\pi(t) = \pi(0) \cdot \exp(\mathbf{Q}t), \ t \ge 0.$$
 (BT8.3.12)

Vectorul probabilităților de stare satisface ecuația diferențială

$$\frac{d\boldsymbol{\pi}(t)}{dt} = \boldsymbol{\pi}(t) \cdot \boldsymbol{Q}, \quad t \ge 0.$$
 (BT8.3.13)

Probabilitățile staționare de stare (în regimul permanent al sistemului) sunt definite prin

$$\boldsymbol{\pi} = \lim_{t \to \infty} \boldsymbol{\pi}(t) \quad \Leftrightarrow \quad \boldsymbol{\pi}_i = \lim_{t \to \infty} \boldsymbol{\pi}_i(t) \quad , \quad i \in \mathcal{S} \,, \tag{BT8.3.14}$$

în ipoteza că această limită există. În acest caz, probabilitățile staționare de stare satisfac sistemul de ecuații liniare:

$$\begin{cases} \boldsymbol{\pi} \cdot \boldsymbol{Q} = \boldsymbol{\theta}, \\ \sum_{i \in \mathcal{S}} \pi_i = 1. \end{cases}$$
(BT8.3.15)

BT8.4. Proprietăți ale rețelelor Petri stohastice

BT8.4.1. Construcția lanțului Markov asociat unei rețele Petri stohastice

Lanțurile Markov în timp continuu joacă un rol fundamental în analiza rețelelor Petri stohastice mărginite. Deoarece distribuțiile exponențiale ce caracterizează întârzierile în executarea tranzițiilor nu au memorie, s-a demonstrat că graful de accesibilitate al unei rețele Petri stohastice mărginite este *izomorf* cu un *lanț Markov continuu*.

Lanțul Markov asociat unei rețele Petri stohastice mărginite (N, M_0) (pentru care ratele de executare a tranzițiilor sunt dependente sau nu de marcajul pozițiilor predecesor) se obține

din graful de accesibilitate al acesteia în modul următor:

- se consideră mulțimea marcajelor accesibile $R(M_0)$, ca fiind spațiul stărilor lanțului Markov. Numărul *s* de stări ale lanțului Markov este egal cu cardinalul mulțimii marcajelor accesibile din M_0 , $R(M_0)$;
- pentru *i* ≠ *j*, *rata tranziției* din starea *M_i* în starea *M_j* este dată de *q_{ij}* = λ'_k, unde λ'_k este frecvența de executare a tranziției *t_k* ce transformă marcajul *M_i* în marcajul *M_j*. Ca o generalizare, *q_{ii}* se definește ca fiind:
 - λ'_k , executarea tranziției t_k transformă marcajul M_i în marcajul M_j ,
- $q_{ij} = \begin{cases} \lambda'_{k1} + \lambda'_{k2} + \dots, \text{ executarea tranzițiilor } t_{k1}, t_{k2} \dots \text{ transformă marcajul } M_i \text{ în marcajul } M_j, \\ 0 \quad , \text{ nu există nici o tranziție care să transforme marcajul } M_i \text{ în marcajul } M_j, \end{cases}$
 - pentru i = j, rata q_{ii} se determină din relația:

$$\sum_{j=1}^{s} q_{ij} = 0 \implies q_{ii} = -\sum_{\substack{j=1\\j\neq i}}^{s} q_{ij} .$$
(BT8.4.1)

Dacă rețeaua Petri stohastică (N, M_0) este mărginită și reversibilă, adică $M_0 \in \mathbb{R}(M), \forall M \in \mathbb{R}(M_0)$ (ceea ce implică faptul că graful de accesibilitate al rețelei este tare conex), atunci ea generează un lanț Markov continuu ergodic, pentru care se pot calcula probabilitățile staționare de stare prin rezolvarea sistemului de ecuații liniare:

$$\begin{cases} \boldsymbol{\pi} \cdot \boldsymbol{Q} = 0, \\ \sum_{i=1}^{s} \pi_i = 1, \end{cases}$$
(BT8.4.2)

în care $Q = [q_{ij}]$ este matricea ratelor de tranziție (de dimensiune $s \times s$) și $\pi = [\pi_1 \ \pi_2, \ \dots, \ \pi_s]$ este vectorul probabilităților staționare de stare, π_i fiind probabilitatea ca rețeaua Petri să fie în starea M_i , $i = \overline{1, s}$ (ilustrare în **AP8.1** – **AP8.3**).

BT8.4.2. Evaluarea performanțelor unei rețele Petri stohastice

Utilizând notațiile introduse mai sus se pot evalua *performanțele* unei rețele Petri stohastice (N, M_0) mărginite și reversibile, după cum urmează (Murata, 1989), (David et Alla, 1992) (ilustrare în **AP8.1** – **AP8.3**):

(i) probabilitatea îndeplinirii unei anumite condiții particulare reprezentată printr-o submulțime *B* de marcaje accesibile din M_0 , $B \subset R(M_0)$, ce au o anumită proprietate:

$$P\{B\} = \sum_{M_i \in B} \pi_i;$$
 (BT8.4.3)

(ii) valoarea medie a numărului de jetoane $M[M(p_i)]$ dintr-o poziție p_i care este kmărginită:

$$M[M(p_i)] = \sum_{n=1}^{k} n P\{B(i,n)\}, \qquad (BT8.4.4)$$

unde B(i,n) este o submulțime din $R(M_0)$ în care numărul de jetoane din poziția p_i este n;

(iii) numărul mediu de executări ale tranziției t_i în unitatea de timp:

$$f_j = \sum_{M_i \in B_j} \pi_i \lambda'_j , \qquad (BT8.4.5)$$

unde B_j este setul stărilor (marcajelor) din R(M_0) pentru care tranziția t_j este validată, π_i este probabilitatea ca rețeaua Petri să fie în starea M_i , λ'_j este frecvența de executare a tranziției t_j din marcajul M_i ;

(iv) gradul mediu de utilizare a tranziției *t_i*:

$$u_j = \sum_{M_i \in B_j} \pi_i \left(\frac{\lambda'_j}{-q_{ii}} \right), \tag{BT8.4.6}$$

unde B_j este setul stărilor (marcajelor) din R(M_0) pentru care tranziția t_j este validată, π_i este probabilitatea ca rețeaua Petri să fie în starea M_i , λ'_j este frecvența de executare a tranziției t_j din marcajul M_i , $-q_{ii}$ reprezintă suma de frecvențe (rate) de executări ale tranzițiilor validate în starea M_i .

BT8.4.3. Proprietăți de conservare

Se consideră o rețea Petri stohastică pură și mărginită (N, M_0) cu n tranziții și m poziții, a cărei topologie este descrisă de matricea de incidență $A = [a_{ii}]$ de dimensiune $n \times m$.

Marcajul M(t) al rețelei N la momentul $t \ge 0$ este un vector aleator de dimensiune m; componenta i a acestui vector reprezintă numărul de jetoane din poziția p_i , $i = \overline{1, m}$, la acel moment; se consideră $M_0 = M(0)$. Fie $u(t) = [u_1(t) \ u_2(t) \dots u_n(t)]^T$ vectorul aleator a cărui componentă $u_j(t)$, $j = \overline{1, n}$, reprezintă numărul (aleator) de executări ale tranziției t_j , $j = \overline{1, n}$, în intervalul de timp [0, t).

În orice moment $t \ge 0$ vectorii M(t) și u(t) sunt legați prin relația temporală, analogă ecuației de stare (BT3.4.4):

$$M(t) = M_0 + A^T u(t), \quad t \ge 0.$$
 (BT8.4.7)

Valorile medii ale celor doi vectori aleatori considerați, M[M(t)] și M[u(t)], satisfac relația:

$$M[M(t)] = M_0 + A^T M[u(t)], \quad \forall t \ge 0.$$
 (BT8.4.8)

Dacă vectorul $y \in \mathbb{Z}^m$, $y \ge \theta$, este un invariant *P* al rețelei ($Ay = \theta$), atunci din relația (BT5.2.1) rezultă că vectorul marcajului mediu M[M(t)] satisface

$$M[M(t)]^T \mathbf{y} = M_0^T \mathbf{y} (= \text{constant}), \quad \forall t \ge 0.$$
 (BT8.4.9)

Considerând că procesul stohastic de marcaj este ergodic și staționar, adică M(t)converge către aceeași limită finită M^* atât în medie temporală cât și în medie probabilistică, atunci vectorul M^* se numește vector de marcaj mediu în regim permanent și verifică relația

$$\boldsymbol{M}^{*T}\boldsymbol{y} = \boldsymbol{M}_0^T \boldsymbol{y} \ . \tag{BT8.4.10}$$

Această relație arată că suma ponderată a marcajelor medii din pozițiile corespunzătoare suportului unui invariant *P* este egală cu suma ponderată a marcajelor inițiale din acele poziții.

Considerând că procesul stohastic de executare a tranzițiilor este ergodic, adică u(t) converge către aceeași limită finită u^* atât în medie temporală cât și în medie probabilistică, atunci vectorul u^* se numește vectorul frecvențelor medii de executare a tranzițiilor în regim permanent și verifică relația

$$\boldsymbol{A}^{T}\boldsymbol{u}^{*}=\boldsymbol{\boldsymbol{\theta}}.$$
 (BT8.4.11)

Scriind relația (BT8.4.11) în forma $(A^+)^T u^* = (A^-)^T u^*$, aceasta exprimă conservarea fluxului de jetoane într-o rețea Petri stohastică mărginită: în regim permanent, fluxul de jetoane care intră în orice poziție este egal cu fluxul de jetoane care iese din acea poziție.

În aceeași ipoteză de ergodicitate pentru procesele de marcaj și de executare a tranzițiilor, *formula lui Little* furnizează timpul mediu de staționare a unui jeton într-o poziție p_i , $i = \overline{1, m}$, notat $d^*(p_i)$, ca raportul dintre marcajul mediu al acelei poziții în regim permanent și suma ponderată a frecvențelor medii de executare a tranzițiilor de intrare în p_i

$$\boldsymbol{d}^{*}(p_{i}) = \frac{M^{*}(p_{i})}{(\boldsymbol{A}_{i}^{+})^{T} \boldsymbol{u}^{*}}, \qquad (BT8.4.12)$$

unde A_i^+ reprezintă coloana *i* a matricei de incidență de intrare A^+ .

BT8.5. Rețele Petri stohastice generalizate

Rețelele Petri stohastice generalizate (eng. *generalized stochastic Petri net – GSPN*) au fost introduse pentru a extinde capacitatea de modelare a rețelelor stohastice. Într-o GSPN, în afară de tranziții cu temporizare de tip exponențial există și tranziții netemporizate (*imediate*). Tranzițiile imediate modelează evenimente a căror apariție are loc instantaneu. În cazul în care două sau mai multe tranziții imediate sunt în conflict, acestora le pot fi asignate probabilitățile de apariție a evenimentelor pe care le modelează. În plus, între tranziții netemporizate se pot impune priorități de executare. O GSPN poate conține, de asemenea, arce inhibitoare având rolul de a inversa logica de validare și executarea a unor tranziții.

Dacă într-o rețea Petri stohastică generalizată pentru un anumit marcaj sunt validate atât tranziții imediate cât și tranziții temporizate, se execută numai tranzițiile imediate. Dacă mai multe tranziții imediate sunt în conflict, numai una dintre ele se execută, în conformitate cu probabilitățile sau prioritățile asignate acestora. Un marcaj al unei GSPN pentru care cel puțin o tranziție netemporizată este validată se numește *marcaj invizibil* (eng. *vanishing marking*). Marcajele pentru care sunt validate numai tranziții temporizate se numesc *marcaje tangibile* (eng. *tangible markings*).

O rețea stohastică generalizată, ce conține atât marcaje tangibile cât și marcaje invizibile este, de asemenea, izomorfă cu un lanț Markov continuu care se obține în același mod ca și în cazul unei rețele Petri stohastice. Eliminând din acest lanț Markov marcajele invizibile și tranzițiile netemporizate se obține *lanțul Markov redus* pentru care probabilitățile staționare de stare există dacă rețeaua este mărginită și reversibilă (ilustrare în **AP8.2**). Aceste condiții restrictive sunt numai suficiente, nu și necesare, putând fi încălcate în cazul în care modelarea unui sistem sub formă de GSPN se realizează pornind de la lanțul Markov corespunzător și impunând pentru acesta condițiile de stabilitate (de regim permanent).

Aplicații

AP8.1.

Fie un server care deservește două tipuri de clienți în paralel, modelat prin rețeaua Petri stohastică din fig. AP8.1.1. Servirea primului tip de clienți este modelată de subrețeaua din partea stângă a figurii (cu nodurile p_1 , t_1 , p_2 , t_2), iar servirea celui de-al doilea tip de clienți de subrețeaua din partea dreaptă a figurii (cu nodurile p_1 , t_3 , p_3 , t_4). Durata de timp asignată tranziției t_i , $i = \overline{1, 4}$, are distribuție exponențială cu rata λ_i [unități de timp ⁻¹]. Se consideră următoarele valori numerice: $\lambda_1 = \lambda_4 = 1$, $\lambda_2 = \lambda_3 = 10$.

Fig. AP8.1.1. Topologia rețelei Petri stohastice studiată în AP8.1.

- 1. Să se determine, prin simulare în mediul *Petri Net Toolbox*, numărul de clienți de fiecare tip serviți complet într-un interval de timp de 10.000 [unități de timp].
- 2. Să se verifice analitic rezultatele obținute la punctul 1.
- 3. Să se comenteze rezultatele obținute la punctul 1 prin prisma celor obținute la AP7.1.

<u>Soluție</u>

1. Rezultatele obținute în urma simulării funcționării sistemului timp de 10.000 [unități de timp] sunt prezentate în fig. AP8.1.2. Numărul de clienți de primul tip serviți complet este dat de indicatorul *Service Sum* pentru tranziția t_2 (având valoarea 917), iar numărul de clienți de al doilea tip serviți complet este dat de indicatorul *Service Sum* pentru tranziția t_4 (având valoarea 8.929). Se observă că raportul dintre cele două numere este aproximativ egal cu raportul dintre ratele de executare corespunzătoare tranzițiilor t_1 și t_3 care modelează procesele de sosire în sistem a clienților de primul tip și, respectiv, de al doilea tip.

2. Pentru rețeaua Petri studiată se construiește mai întâi arborele de accesibilitate (fig. AP8.1.3.(a)). Aplicând algoritmul prezentat în BT8.4.1, se obține lanțul Markov asociat rețelei (reprezentat în fig. AP8.1.3.(b)) având drept stări cele trei marcaje accesibile din M0.

161

— Aplicații ale rețelelor Petri – O. Păstrăvanu, M. Matcovschi, C. Mahulea

Petri Net Toolbox -	Web Browser				<u>- 0 ×</u>				
	Global S	Statistics	: Transi	tions					
Model:ap81.xml									
Events: 19692									
Time:10000.45									
Transition Name	Service Sum	Service Rate	Service Dist.	Service Time	Utilization				
t1	917	0.091696	10.9056	0.089621	0.0082823				
t2	917	0.091696	10.9056	0.10054	0.0092807				
t3	8929	0.89286	1.12	0.089962	0.080382				
t4	8929	0.89286	1.12	1.0105	0.90224				
		Ok	Save						

Fig. AP8.1.2. Indicatorii globali pentru tranzițiile rețelei din fig. AP8.1.1.

Considerând stările lanțului Markov în ordinea M0, M1, M2, matricea ratelor tranzițiilor de stare este

$$\boldsymbol{Q} = \begin{bmatrix} -\lambda_1 - \lambda_3 & \lambda_1 & \lambda_3 \\ \lambda_2 & -\lambda_2 & 0 \\ \lambda_4 & 0 & -\lambda_4 \end{bmatrix} = \begin{bmatrix} -11 & 1 & 10 \\ 10 & -10 & 0 \\ 1 & 0 & -1 \end{bmatrix}.$$

Vectorul probabilităților staționare de stare, $\boldsymbol{\pi} = [\pi_0 \ \pi_1 \ \pi_2]$, se determină din condițiile $\boldsymbol{\pi} \cdot \boldsymbol{Q} = \boldsymbol{\theta}$, $\pi_0 + \pi_1 + \pi_2 = 1$, din care rezultă $\pi_0 = 10/111$, $\pi_1 = 1/111$ și $\pi_2 = 100/111$.

Fig. AP8.1.3. (a) Arborele de accesibilitate și (b) lanțul Markov ce corespund rețelei Petri stohastice din fig. AP8.1.1.

Deoarece tranziția t_2 se execută numai din marcajul M1, cu rata λ_2 , numărul mediu de executări în unitatea de timp este, conform (BT8.4.5), egal cu $f_2 = \pi_1 \lambda_2 = 10/111 = 0,09009$ [unități de timp⁻¹], astfel încât în 10.000 [unități de timp] această tranziție se va executa în medie de 900 de ori.

162 -

Raționând analog pentru tranziția t4 se obține $f_4 = \pi_2 \lambda_4 = 100/111 = 0,9009$ [unități de timp⁻¹], astfel încât în 10.000 [unități de timp] tranziția t4 se va executa în medie de 9000 de ori.

Se observă că rezultatele obținute prin simulare au valori foarte apropiate de valorile calculate analitic.

3. Rețelele din fig. AP7.1.1 și AP8.1.1 au aceeași topologie, același marcaj inițial și aceleași informații temporale asignate tranzițiilor. Diferențele care apar între dinamicele celor două rețele se datorează modului în care, de fiecare dată când se ajunge în marcajul inițial și sunt validate t1 și t3, este selectată următoarea tranziție care va fi executată.

Observație: Rețeaua Petri stohastică din fig. AP8.1.1 poate modela, de exemplu, un server cu posibilități de defectare (vezi **AP2.5**).

AP8.2.

Fie un sistem de fabricație compus dintr-o mașină M și un depozit D ca în figura de mai jos, capacitatea sistemului (mașină + depozit) fiind limitată la două piese:

Fig. AP8.2.1. Reprezentare schematică a sistemului de fabricație studiat în AP8.2.

Dacă există loc liber în depozit, piesele intră în depozitul D după o distribuție exponențială cu rata λ . Ori de câte ori mașina M este liberă și există o piesă în depozit, aceasta este preluată imediat pe mașină. Mașina M prelucrează piesele după o distribuție exponențială cu rata μ .

- 1. Să se construiască modelul de tip rețea Petri stohastică ce descrie funcționarea sistemului, considerând că în starea inițială depozitul este gol și mașina este neutilizată.
- 2. Să se construiască lanțul Markov asociat modelului.
- 3. Considerând $\lambda = 2$ [s⁻¹] și $\mu = 1$ [s⁻¹], să se determine analitic (în ipoteza că sistemul funcționează în regim permanent):
 - (i) probabilitatea cu care sistemul se poate afla în fiecare din stările accesibile;
 - (ii) gradul de utilizare a mașinii;
 - (iii) frecvența reală de sosire a pieselor în depozit și frecvența reală de prelucrare a pieselor pe maşina M;
 - (iv) numărul mediu de piese ce se pot afla în depozitul D sau se prelucrează de către maşina M;
 - (v) timpul mediu petrecut de o piesă în sistem.
- 4. Să se verifice, prin simulare în mediul *Petri Net Toolbox*, rezultatele obținute la punctul 3.

<u>Soluție</u>

1. Sistemul de fabricație studiat poate fi reprezentat prin rețeaua Petri stohastică generalizată din fig. AP8.2.2.(a), în care sunt modelate explicit cele două situații în care se poate găsi o piesă (client) în sistem, anume așteptând în depozit (poziția p_1) sau în curs de prelucrare (servire) (poziția p_2). Tranzițiile t_1 și t_3 modelează procesele de sosire și, respectiv, de servire a clienților, fiind temporizate. Tranziția t_2 , care modelează trecerea unei piese din depozit pe mașină, nu este temporizată. Rețeaua din fig. AP8.2.2.(b), în care ambele tranziții sunt temporizate, reprezintă un model simplificat al aceluiași sistem.

Fig. AP8.2.2. Rețelele Petri (a) stohastică generalizată și (b) stohastică ce modelează sistemul de fabricație din fig. AP8.2.1.

2. Lanțul Markov asociat fiecăreia dintre rețelele Petri din fig. AP8.2.2 se construiește pornind de la arborele de accesibilitate corespunzător (fig. AP8.2.3). Pentru rețeaua stohastică generalizată marcajele M1 și M2 sunt invizibile, tranziția imediată t_2 fiind validată. Prin eliminarea acestor marcaje, lanțul Markov asociat rețelei va avea trei stări, reprezentate de marcajele M0, M3 și M4.

Fig. AP8.2.3. Arborii de accesibilitate ai rețelelor din (a) fig. AP8.2.2.(a) și (b) fig. AP8.2.2.(b).
Concret, sistemul de fabricație se poate afla în una dintre următoarele trei stări: "0" – nici o piesă în sistem, "1" – o singură piesă în sistem (în curs de prelucrare) și "2" – două piese în sistem (una în curs de prelucrare și una în depozit). Tranzițiile din "0" în "1" și din "1" în "2" au loc cu rata λ (rata de sosire a clienților în sistem), iar tranzițiile din "2" în "1" și din "1" în "0" au loc cu rata μ (rata de servire). Lanțul Markov corespunzător este prezentat în fig. AP8.2.4, fiind un tip de lanț binecunoscut, denumit *birth-death* (deoarece tranzițiile de stare au loc numai între stări învecinate).

La același lanț Markov se ajunge și analizând rețeaua stohastică din fig. AP8.2.2.(b), cele trei stări ale lanțului Markov (cu aceeași semnificație fizică de mai sus) corespunzând marcajelor M0, M1 și M2.

Fig. AP8.2.4. Lanțul Markov asociat rețelei Petri stohastice din fig. AP8.2.2.(b).

3.(i). Matricea ratelor de tranziție de stare corespunzătoare lanțului Markov din fig. AP8.2.4 este

$$\boldsymbol{Q} = \begin{bmatrix} -\lambda & \lambda & 0 \\ \mu & -(\lambda + \mu) & \lambda \\ 0 & \mu & -\mu \end{bmatrix}.$$

Vectorul probabilităților staționare de stare, $\pi = [\pi_0 \ \pi_1 \ \pi_2]$, se determină din condițiile

 $\boldsymbol{\pi} \cdot \boldsymbol{Q} = \boldsymbol{\theta}, \quad \pi_0 + \pi_1 + \pi_2 = 1, \text{ care implică } \pi_1 = \frac{\lambda}{\mu} \pi_0, \quad \pi_2 = \frac{\lambda}{\mu} \pi_1 \text{ si } \pi_0 = \left[1 + \frac{\lambda}{\mu} + \left(\frac{\lambda}{\mu}\right)^2\right]^{-1}.$ Pentru valorile numerice precizate în enunț rezultă $\pi_0 = 4/7, \quad \pi_1 = 2/7 \text{ si } \pi_2 = 1/7.$

(ii). Deoarece mașina (serverul) este utilizată atunci când există cel puțin o piesă (un client) în sistem, gradul de utilizare a mașinii este $\pi_1 + \pi_2 = 1 - \pi_0 = 3/7$.

(iii). În sistem pot sosi piese numai atunci când sistemul se află într-o stare diferită de "2", astfel că frecvența reală de sosire a pieselor în depozit (rata efectivă de sosire a clienților) este dată de $\lambda(1-\pi_2) = 6/7$ [s⁻¹]. Frecvența reală de prelucrare a pieselor pe mașina M (rata de plecare a clienților), fiind dată de $\mu(1-\pi_0) = 6/7$ [s⁻¹], este egală cu frecvența reală de sosire a pieselor.

(iv). Numărul mediu de piese aflate în sistem (în depozitul D sau în curs de prelucrare de către mașina M), notat M[X], se poate calcula, de asemenea, pe baza probabilităților staționare de stare, sub forma $M[X] = \pi_1 + 2\pi_2 = 4/7$.

(v). Timpul mediu petrecut de o piesă în sistem, notat M[S], reprezintă raportul dintre numărul mediu de piese din sistem și frecvența reală de sosire a pieselor în sistem

166 — Aplicații ale rețelelor Petri – O. Păstrăvanu, M. Matcovschi, C. Mahulea –

$$M[S] = \frac{M[X]}{\lambda (1 - \pi_2)} = \frac{2}{3}.$$

4. Prin simularea în mediul *Petri Net Toolbox* a funcționării sistemului de fabricație pe o durată de 25.000 [s] se obțin indicatorii globali prezentați în fig. AP8.2.5 pentru tranzițiile și pozițiile rețelei stohastice generalizate din fig. AP8.2.2.(a). Cititorul este invitat să pună în corespondență rezultatele determinate analitic la punctul 3 cu cele obținute prin simulare.

	Petri Net Toolbox - Web Browser											
Global Statistics: Transitions												
Aodel:ap8_2g.xml												
ivents:64195												
'ime:25000.4076												
Transi	tion Name	e Servio	e Sum	Service Rate	Service Dist.	Service Time	e Utiliza	ation				
	t1	21	399	0.85595	1.1683	0.77718	0.66	522				
	t2	21	398	0.85591	1.1684	0	3.7233	e-005				
	t3	21	398	0.85591	1.1684	0.39114	0.33	481				
				Ok	Save							
(a)												
				(a)							
Petri Ne	et Toolbox -	Web Brow	ser	(a)			_ 0				
Petri Ne	t Toolbox -	Web Brow	Gloi	al Statis	, itics: Pla	ces		_ 🗆				
Petri Ne	et Toolbox -	Web Brow	Gloi	oal Statis	, itics: Pla	ces		_ 🗆				
Petri Ne lodel:a	et Toolbox - p8_2g.xml	Web Brow	Gloi	oal Statis) itics: Plac	ces		_ 0				
Petri Ne lodel:a vents:6	e t Toolbox - p8_2g.xml 64195	Web Brow	Glol	oal Statis	, itics: Pla	ces		_ 🗆				
<mark>Petri Ne</mark> lodel:a vents:6 me:250	et Toolbox - p8_2g.xml 64195 000.4076	Web Brow	Gloi	oal Statis	tics: Pla	ces						
Petri No lodel:a vents:6 me:250 Place Name	p8_2g.xml 64195 000.4076 Arrival Sum	Web Brow Arrival Rate	GIOI Arrival Dist.	(a cal Statis) tics: Plac Throughput Rate	C e S Throughput Dist.	Waiting Time	Queue				
<mark>9 Petri Ne</mark> lodel:a vents:6 me:250 Place Name p1	et Toolbox - p8_2g.xml 64195 000.4076 Arrival Sum 21399	Web Brow Arrival Rate 0.85595	Arrival Dist.	al Statis) tics: Place Throughput Rate 0.85594	CeS Throughput Dist. 1.1683	Waiting Time 0.16705	Queue Lengti 0.1429				
Petri No lodel:a vents:6 me:250 Place Name p1 p2	et Toolbox - p8_2g.xml 64195 000.4076 Arrival Sum 21399	Web Brow Arrival Rate 0.85595 0.85591	Arrival Dist. 1.1683 1.1684	Cal Statis) stics: Place Throughput Rate 0.85594 0.85594	Throughput I 1.1683 1	Waiting Time 0.16705 0.50142	Queue Lengti 0.1429 0.4291				
<mark>Petri Ne</mark> lodel:a wents:a me:250 Place Name p1 p2 p3	et Toolbox - p8_2g.xml 64195 000.4076 Arrival Sum 21399 [21398] 21398]	Web Brow Arrival Rate 0.85595 0.85591 0.85591	Arrival Dist. 1.1683 1.1684 1.1684	(a) Dal Statis Throughput Sum 21398 21398 21398) tics: Place Throughput Rate 0.85594 0.85594 0.85594	Throughput Image: Dist. Image: Dist. <td>Waiting Time 0.16705 0.50142 0.66694</td> <td>Queue Lengti 0.14291 0.4291</td>	Waiting Time 0.16705 0.50142 0.66694	Queue Lengti 0.14291 0.4291				
odel:a vents:6 me:250 Place Name p1 p2 p3 p4	et Toolbox - p8_2g.xml 64195 000.4076 Arrival Sum 21398 21398 21398	Web Brow Arrival Rate 0.85595 0.85591 0.85591	Arrival Dist. 1.1683 1.1684 1.1684	(a) Dal Statis Throughput Sum 21398 21398 21398 21399) tics: Place Throughput Rate 0.85594 0.85594 0.85594 0.85598	Throughput Dist. I 1.1683 I 1.1683 I 1.1683 I 1.1683 I	Waiting Time 0.16705 0.50142 0.66694 1.6682	Queue Lengtr 0.14291 0.5708- 1.4279				
Petri Ne lodel:a vents:6 me:250 Place Name p1 p2 p3 p4	et Toolbox - p8_2g.xml 64195 000.4076 Arrival Sum 21399 21398 21398	Web Brow Arrival Rate 0.85595 0.85591 0.85591 0.85591	Arrival Dist. 1.1683 1.1684 1.1684 1.1684	(a) Cal Statis Throughput Sum 21398 21398 21398 21398 21399) tics: Place Throughput Rate 0.85594 0.85594 0.85594 0.85598	Throughput 1 1.1683 1 1.1683 1 1.1683 1 1.1683 1 1.1683 1	Waiting Time 0.16705 0.50142 0.66694 1.6682	Queue Lengtr 0.14291 0.42911 0.5708 1.4279				

⁽b)

Fig. AP8.2.5. Indicatorii globali pentru (a) tranzițiile și (b) pozițiile rețelei din fig. AP8.2.2.(a).

- 167

AP8.3.

Se consideră rețeaua Petri stohastică prezentată în fig. AP8.3.1 (Murata, 1989). Tranziția t_2 se execută cu o rată dependentă de marcajul poziției predecesor, adică $m_2\lambda_2$, unde m_2 notează marcajul curent al poziției p_2 . Ratele de executare corespunzătoare tranzițiilor t_1 , t_3 , t_4 și t_5 , notate λ_1 , λ_3 , λ_4 și, respectiv, λ_5 , sunt independente de marcajul pozițiilor predecesor având următoarele valori numerice: $\lambda_1 = \lambda_5 = 0.5$ [s⁻¹] și $\lambda_2 = \lambda_3 = \lambda_4 = 1$ [s⁻¹].

- 1. Să se simuleze dinamica rețelei pe durata corespunzătoare la 30.000 [s] și să se determine următorii indicatori de performanță:
 - (i) numărul mediu de jetoane în unitatea de timp din fiecare poziție a rețelei;
 - (ii) numărul mediu de executări în unitatea de timp pentru fiecare tranziție a rețelei;
 - (iii) gradul de utilizare a fiecărei tranziții din rețea.
- 2. Să se verifice prin calcul analitic rezultatele obținute la punctul 1.

Fig. AP8.3.1. Rețeaua Petri stohastică studiată în AP8.3.

<u>Soluție</u>

1. Utilizând mediul *Petri Net Toolbox* pentru o tranziție temporizată dintr-o rețea Petri stohastică (generalizată), se poate impune ca rata de executare să fie dependentă de marcajul pozițiilor predecesor prin setarea opțiunii *Marking dependent* din fereastra de editare corespunzătoare. Această opțiune nu este disponibilă pentru rețelele cu temporizare T (deterministă sau stochastică).

Prin simularea dinamicii rețelei pe o durată de 30.000 [s] se obțin indicatorii globali din fig. AP8.3.2.

(i). Numărul mediu de jetoane în unitatea de timp din fiecare poziție a rețelei este precizat de indicatorul *Queue Length*.

(ii). Numărul mediu de executări în unitatea de timp pentru fiecare tranziție a rețelei este precizat de indicatorul *Service Rate*.

(iii). Gradul de utilizare al fiecărei tranziții din rețea este precizat de indicatorul Utilization.

<mark>∰</mark> Pe	etri Net Too	olbox - Web	Browser					
		G	lobal	Statistic	s: Trans	itions		
Мос	del:ap8_3	Exml						
Eve	nts:6526	9						
Time	e :30000.2	2764						
	Transitio Name	on s	Service Sum	Service Rate	Service Dist.	Service Time	Utiliza	tion
	t1		8204	0.27346	3.6568	0.39107	0.107	06
	t2		16286	0.54286	1.8421	0.44173	0.239	88
	t3		16348	0.54493	1.8351	0.39251	0.213	94
t4 16348				0.54493	1.8351	0.61089	0.332	91
	t5		8083	0.26943	3.7115	0.3952	0.106	48
				Ok	Save			
tri Ne	t Toolbox -	- Web Brow	ser	(a)			_
			Glob	oal Statis	tics: Pla	ces		
l ei :aj	p8_3.xml							
nts:6	65269							
:300	JUO.2764							
ace ume	Arrival Sum	Arrival Rate	Arrival Dist.	Throughput Sum	Throughput Rate	Throughput Dist.	Waiting Time	Que Len
o1	32634	1.0878	0.9193	32635	1.0878	0.91925	0.67222	0.73

(b)
Fig. AP8.3.2. Indicatorii globali de performanță referitori la (a) tranzițiile și (b) pozițiile
rețelei Petri din fig. AP8.3.1, corespunzători unei durate de funcționare de 30.000 [s].

0.5429

0.54495

0.54495

Save

1.8419

1.835

1.835

0.99808

1.334

1.334

0.54182

0.72692

0.72692

2. Verificarea analitică a rezultatelor de la punctul 1 se bazează pe analiza lanțului Markov asociat rețelei. Acesta poate fi construit pornind de la arborele de accesibilitate corespunzător (fig. AP8.3.3) aplicând algoritmul prezentat în paragraful BT8.4.1.

p2

рЗ

p4

16287

16348

16348

0.54289

0.54493

0.54493

1.842

1.8351

1.8351

16286

16348

16348

Ok

Fig. AP8.3.3. Arborele de accesibilitate al rețelei Petri stohastice studiate în AP8.3.

Fig. AP8.3.4. Lanțul Markov asociat rețelei Petri stohastice studiate în AP8.3.

Considerând că stările lanțului Markov corespund marcajelor M0, M1, ..., M5, din fig AP8.3.3, rezultă fig. AP8.3.4, iar matricea ratelor de tranziție de stare are forma:

$$\boldsymbol{Q} = \begin{bmatrix} -\lambda_1 - \lambda_3 - \lambda_5 & \lambda_1 + \lambda_5 & \lambda_3 & 0 & 0 & 0 \\ \lambda_2 & -\lambda_1 - \lambda_2 - \lambda_3 - \lambda_5 & 0 & \lambda_1 + \lambda_5 & \lambda_3 & 0 \\ \lambda_4 & 0 & -\lambda_1 - \lambda_3 - \lambda_4 - \lambda_5 & 0 & \lambda_1 + \lambda_5 & \lambda_3 \\ 0 & 2\lambda_2 & 0 & -2\lambda_2 & 0 & 0 \\ 0 & \lambda_4 & \lambda_2 & 0 & -\lambda_2 - \lambda_4 & 0 \\ 0 & 0 & \lambda_4 & 0 & 0 & -\lambda_4 \end{bmatrix}.$$

Cu valorile numerice din enunț, se obține:

- 169

$$\boldsymbol{Q} = \begin{bmatrix} -2 & 1 & 1 & 0 & 0 & 0 \\ 1 & -3 & 0 & 1 & 1 & 0 \\ 1 & 0 & -3 & 0 & 1 & 1 \\ 0 & 2 & 0 & -2 & 0 & 0 \\ 0 & 1 & 1 & 0 & -2 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 \end{bmatrix}$$

Vectorul probabilităților staționare de stare, $\boldsymbol{\pi} = [\pi_0 \ \pi_1 \ \pi_2 \ \pi_3 \ \pi_4 \ \pi_5]$, are drept elemente probabilitățile π_i ca lanțul (în regim permanent) să se găsească în starea M*i*, *i* = 0,...,5. Rezolvând sistemul de ecuații liniare (BT8.4.2)

$$\begin{cases} \boldsymbol{\pi} \cdot \boldsymbol{Q} = \boldsymbol{\theta} \\ \boldsymbol{\pi}_0 + \ldots + \boldsymbol{\pi}_5 = 1 \end{cases}$$

se obțin valorile $\pi_0 = \pi_1 = \pi_2 = \pi_4 = \pi_5 = 2/11$ și $\pi_3 = 1/11$. Valorile indicatorilor de performanță de la punctul 1 pot fi calculate pe baza probabilităților staționare de stare.

(i). Numărul mediu de jetoane în unitatea de timp din fiecare poziție a rețelei se calculează aplicând relația (BT8.4.4). De exemplu, în poziția p_1 se pot afla: 2 jetoane în marcajul M0, 1 jeton în marcajul M1 și 1 jeton în marcajul M2, astfel că se obține:

$$M[M(p_1)] = 2\pi_0 + \pi_1 + \pi_2 = \frac{8}{11} = 0,7273$$

Un raționament similar conduce la

$$M[M(p_2)] = \pi_1 + 2\pi_3 + \pi_4 = \frac{6}{11} = 0,5455.$$

$$M[M(p_3)] = \pi_2 + \pi_4 + 2\pi_5 = \frac{8}{11} = 0,7273.$$

$$M[M(p_4)] = \pi_2 + \pi_4 + 2\pi_5 = \frac{8}{11} = 0,7273.$$

(ii). Numărul mediu de executări în unitatea de timp pentru fiecare tranziție a rețelei se calculează aplicând relația (BT8.4.5). De exemplu, tranziția t_2 se execută cu rata λ_2 din marcajele M1 și M4, și cu rata $2\lambda_2$ din marcajul M3, astfel că rata sa medie de executare este:

$$f_2 = \lambda_2 \pi_1 + 2\lambda_2 \pi_3 + \lambda_2 \pi_4 = \frac{6}{11} = 0,5455.$$

Analog se calculează

$$\begin{split} f_1 &= \lambda_1 \pi_0 + \lambda_1 \pi_1 + \lambda_1 \pi_2 = \frac{3}{11} = 0,2727 ,\\ f_3 &= \lambda_3 \pi_0 + \lambda_3 \pi_1 + \lambda_3 \pi_2 = \frac{6}{11} = 0,5455 ,\\ f_4 &= \lambda_4 \pi_2 + \lambda_4 \pi_4 + \lambda_4 \pi_5 = \frac{6}{11} = 0,5455 ,\\ f_5 &= \lambda_5 \pi_0 + \lambda_5 \pi_1 + \lambda_5 \pi_2 = \frac{3}{11} = 0,2727 . \end{split}$$

(iii). Gradul de utilizare al fiecărei tranziții din rețea se calculează aplicând relația (BT8.4.6). Cu notațiile $q_{00} = -(\lambda_1 + \lambda_3 + \lambda_5)$, $q_{11} = -(\lambda_1 + \lambda_2 + \lambda_3 + \lambda_5)$, $q_{22} = -(\lambda_1 + \lambda_3 + \lambda_4 + \lambda_5)$, $q_{33} = -2\lambda_2$, $q_{44} = -(\lambda_2 + \lambda_4)$, $q_{55} = -\lambda_4$ pentru elementele diagonalei principale a matricei Qse obține:

$$\begin{split} u_1 &= \frac{\lambda_1}{-q_{00}} \pi_0 + \frac{\lambda_1}{-q_{11}} \pi_1 + \frac{\lambda_1}{-q_{22}} \pi_2 = \frac{7}{66} = 0,106, \\ u_2 &= \frac{\lambda_2}{-q_{11}} \pi_1 + \frac{2\lambda_2}{-q_{33}} \pi_3 + \frac{\lambda_2}{-q_{44}} \pi_4 = \frac{8}{33} = 0,2424, \\ u_3 &= \frac{\lambda_3}{-q_{00}} \pi_0 + \frac{\lambda_3}{-q_{11}} \pi_1 + \frac{\lambda_3}{-q_{22}} \pi_2 = \frac{7}{33} = 0,2121, \\ u_4 &= \frac{\lambda_4}{-q_{22}} \pi_2 + \frac{\lambda_4}{-q_{44}} \pi_4 + \frac{\lambda_4}{-q_{55}} \pi_5 = \frac{1}{3} = 0,333, \\ u_5 &= \frac{\lambda_5}{-q_{00}} \pi_0 + \frac{\lambda_5}{-q_{11}} \pi_1 + \frac{\lambda_5}{-q_{22}} \pi_2 = \frac{7}{66} = 0,106. \end{split}$$

Rezultatele obținute analitic pot fi comparate cu cele obținute prin simulare în *Petri Net Toolbox*.

AP8.4.

Se consideră o rețea de așteptare alcătuită din trei servere și firelele de așteptare ce le preced, conectate ca în fig. AP8.4.1 (Cassandras, 1993). Durata de timp dintre sosirile în sistem a doi clienți succesivi are o distribuție exponențială de rată $r_1 = 1$ [s⁻¹]. Pentru serverul *i*, $i = \overline{1,3}$, durata de servire a unui client are distribuție exponențială de rată μ_i , $\mu_1 = \mu_2 = 4$ [s⁻¹] și $\mu_3 = 2$ [s⁻¹]. Probabilitatea de rutare (dirijare) a unui client de la serverul *i* către serverul *j* este notată p_{ij} , $i, j = \overline{1,3}$, și ia valoarea: $p_{11} = 30\%$, $p_{12} = 20\%$, $p_{13} = 50\%$, $p_{21} = 20\%$ și $p_{22} = 80\%$. Probabilitățile p_{ij} ce nu apar în lista precedentă sunt nule și, în aceste cazuri, nu au loc rutări de la serverul *i* la serverul *j*, neavând corespondent grafic în fig. AP8.4.1.

Fig. AP8.4.1. Reprezentare schematică a rețelei de așteptare studiată în AP8.4.

- 1. Să se construiască o rețea Petri stohastică ce modelează funcționarea sistemului, considerând că în starea inițială nu există nici un client în sistem.
- 2. Pentru fiecare din serverele sistemului, să se determine prin simulare în mediul *Petri Net Toolbox,* pe un interval de timp de 10.000 [s], următoarele performanțe:
 - (i) rata de sosire a clienților;
 - (ii) gradul de utilizare;
 - (iii) numărul mediu de clienți din firul de așteptare ce îl precede și durata medie de așteptare per client.

<u>Soluție</u>

1. Rețeaua de așteptare studiată este modelată prin rețeaua Petri stohastică generalizată din fig. AP8.4.2 în care tranziția In modelează procesul de sosire a clienților în rețea, fiind temporizată cu rata r_1 . Tranzițiile m1, m2 și m2 modelează procesele de servire a clienților de către cele trei servere, fiind temporizate cu ratele μ_1 , μ_2 și, respectiv, μ_3 . Procesul de rutare a clienților serviți de primul server este modelat de tranzițiile netemporizate t11, t12 și t13, cărora le sunt asignate probabilitățile p_{11} , p_{12} și, respectiv, p_{13} . Similar, rutarea clienților serviți de al doilea server este modelată de tranzițiile netemporizate t21 și t22, având asignate probabilitățile p_{21} , respectiv p_{22} . Semnificația fizică a pozițiilor este evidentă.

Fig. AP8.4.2. Modelul de tip rețea Petri stohastică generalizată al sistemului de așteptare din fig. AP8.4.1.

2. Indicatorii globali referitori la pozițiile modelului din fig. AP8.4.2 determinați în urma simulării în mediul *Petri Net Toolbox* pe durata de 10.000 [s] sunt prezentate în fig. AP8.4.3.

(i). Rata de sosire a clienților la nodul *i* este dată de indicatorul *Arrival Rate* corespunzător poziției q*i* ce modelează firul de așteptare, i = 1, 2, 3, obținându-se 1,96 [s⁻¹] pentru nodul 1, 1,95 [s⁻¹] pentru nodul 2 și 0,99 [s⁻¹] pentru nodul 3.

(ii). Gradul de utilizare a serverului *i* este dat de indicatorul *Queue Length* corespunzător poziției s*i* ce modelează activitatea serverului, i = 1, 2, 3, obținându-se valorile 0,49 pentru nodul 1, 0,49 pentru nodul 2 și 0,48 pentru nodul 3.

(iii). Numărul mediu de clienți din firul de așteptare ce precede serverul i și durata medie de așteptare sunt date de indicatorii *Queue Length* și, respectiv, *Waiting Time* corespunzători poziției qi, i = 1, 2, 3.

Ś	👺 Petri Net Toolbox - Web Browser												
•	Global Statistics: Places												
ᄩ	Events:157236												
Т	Time: 10000.0711												
	Place Name	Arrival Sum	Arrival Rate	Arrival Dist.	Throughput Sum	Throughput Rate	Throughput Dist.	Waiting Time	Queue Length				
	q1	19633	1.9633	0.50935	19632	1.9632	0.50937	0.24327	0.47759				
	s1	19632	1.9632	0.50938	19632	1.9632	0.50937	0.25041	0.49161				
	01	19632	1.9632	0.50938	19631	1.9632	0.50937	0	0				
	s10	19632	1.9632	0.50938	19632	1.9632	0.50937	0.25896	0.50839				
	q2	19555	1.9555	0.51138	19555	1.9561	0.51123	0.2397	0.46873				
	s2	19555	1.9555	0.51138	19555	1.956	0.51124	0.25226	0.4933				
	s20	19555	1.9555	0.51138	19555	1.9555	0.51138	0.25912	0.5067				
	02	19555	1.9555	0.51138	19555	1.956	0.51125	0	0				
	q3	9919	0.99189	1.0082	9919	0.9919	1.0082	0.46147	0.45773				
	s3	9919	0.99189	1.0082	9918	0.9918	1.0083	0.49115	0.48712				
	s30	9918	0.99179	1.0083	9919	0.9919	1.0082	0.51707	0.51288				
	pout	9918	0.99179	1.0083	9918	0.9918	1.0083	0	0				
Ľ													
					Ok	Save							

Fig. AP8.4.3. Indicatorii globali pentru pozițiile rețelei din fig. AP8.4.2.

<u>Observație</u>: Performanțele rețelei de așteptare pot fi evaluate considerând fiecare nod separat ca fiind un sistem de așteptare de tip M/M/1 (Cassandras, 1993).

(i). Studiul analitic al dinamicii de regim permanent al acestei rețele de așteptare se bazează pe calcularea ratelor de sosire a clienților, λ_i , $i = \overline{1,3}$, la fiecare nod al rețelei în regim permanent. Scriind ecuațiile de bilanț al fluxului (eng. *flow balance equations*)

$$\begin{split} \lambda_1 &= r_1 + p_{11}\lambda_1 + p_{21}\lambda_2 \\ \lambda_2 &= p_{12}\lambda_1 + p_{22}\lambda_2 \\ \lambda_3 &= p_{13}\lambda_1 \end{split}$$

rezultă

$$\lambda_1 = \frac{1}{p_{13}}r_1 = 2 [s^{-1}], \quad \lambda_2 = \frac{p_{12}}{p_{21}p_{13}}r_1 = 2 [s^{-1}], \quad \lambda_3 = r_1 = 1 [s^{-1}].$$

(ii). Gradele de utilizare a celor trei servere sunt $\rho_i = \lambda_i / \mu_i = 0.5 < 1$, $i = \overline{1,3}$, având valori subunitare, satisfac condiția de stabilitate și confirmă faptul că rețeaua de așteptare ajunge într-adevăr în regim permanent.

(iii). Numărul mediu de clienți la nodul *i* al rețelei fiind dat de $M[X_i] = \frac{\rho_i}{1 - \rho_i}$, $i = \overline{1, 3}$, se obține $M[X_1] = M[X_2] = M[X_3] = 1$.

Timpul mediu petrecut de un client la nodul *i* al rețelei se calculează aplicând legea lui Little:

$$M[X_i] = \lambda_i M[S_i] \implies M[S_i] = \frac{1}{\mu_i(1-\rho_i)}, \quad i = \overline{1,3},$$

și permite determinarea timpului mediu de așteptare al unui client la acel nod

$$\mathbf{M}[W_i] = \mathbf{M}[S_i] - \mu_i, \quad i = \overline{1,3}.$$

Pentru valorile numerice precizate rezultă

$$M[S_1] = M[S_2] = 0.5 [s], \quad M[S_3] = 1 [s],$$

$$M[W_1] = M[W_2] = 0.25 [s], \quad M[W_3] = 0.5 [s].$$

Capitolul 9

Modele de tip max-plus

Breviar teoretic

BT9.1. Proprietăți fundamentale ale algebrei (max, +)

Considerăm mulțimea $\mathbb{R} \cup \{-\infty\}$, echipată cu o operație aditivă, notată \oplus , și o operație multiplicativă, notată \otimes , definite după cum urmează:

$$a \oplus b = \max\{a, b\} \tag{BT9.1.1}$$

$$a \otimes b = a + b \tag{BT9.1.2}$$

unde operațiile binare 'max' și '+' au semnificația standard cunoscută de către cititor.

Operația aditivă 🕀 posedă următoarele proprietăți:

1) Legea internă:

$$\forall a, b \in \mathbb{R} \cup \{-\infty\} : a \oplus b \in \mathbb{R} \cup \{-\infty\}$$
(BT9.1.3)

2) Comutativitatea:

$$\forall a, b \in \mathbb{R} \cup \{-\infty\} : a \oplus b = b \oplus a \tag{BT9.1.4}$$

3) Asociativitatea:

$$\forall a, b, c \in \mathbb{R} \cup \{-\infty\} : (a \oplus b) \oplus c = a \oplus (b \oplus c)$$
 (BT9.1.5)

4) Existența elementului nul (neutru în raport cu \oplus):

$$\exists \varepsilon = -\infty \in \mathbb{R} \cup \{-\infty\} : \forall a \in \mathbb{R} \cup \{-\infty\} : a \oplus \varepsilon = \varepsilon \oplus a = a$$
 (BT9.1.6)

5) Idempotența:

$$\forall a \in \mathbb{R} \cup \{-\infty\} : a \oplus a = a \tag{BT9.1.7}$$

Operația multiplicativă \otimes posedă următoarele proprietăți: 1) Legea internă:

$$\forall a, b \in \mathbb{R} \cup \{-\infty\} : a \otimes b \in \mathbb{R} \cup \{-\infty\}.$$
(BT9.1.8)

2) Comutativitatea:

$$\forall a, b \in \mathbb{R} \cup \{-\infty\} : a \otimes b = b \otimes a . \tag{BT9.1.9}$$

3) Asociativitatea:

$$\forall a, b, c \in \mathbb{R} \cup \{-\infty\} : (a \otimes b) \otimes c = a \otimes (b \otimes c).$$
(BT9.1.10)

4) Existența elementului unitate (neutru în raport cu \otimes):

$$\exists e = 0 \in \mathbb{R} \cup \{-\infty\} : \forall a \in \mathbb{R} \cup \{-\infty\} : a \otimes e = e \otimes a = a.$$
 (BT9.1.11)

5) Existența elementului invers:

$$\forall a \in \mathbb{R} \quad \exists a^{-1} = -a \in \mathbb{R} : a \otimes a^{-1} = a^{-1} \otimes a = e \ (= 0) \quad . \tag{BT9.1.12}$$

6) Elementul nul $\varepsilon = -\infty$ este absorbant în raport cu \otimes :

$$\forall a \in \mathbb{R} \quad a \otimes \varepsilon = \varepsilon \otimes a = \varepsilon \tag{BT9.1.13}$$

De asemenea, mai constatăm că operația multiplicativă \otimes este distributivă în raport cu operația aditivă \oplus , adică:

$$\forall a, b, c \in \mathbb{R} \cup \{-\infty\} : (a \oplus b) \otimes c = a \otimes c \oplus b \otimes c . \tag{BT9.1.14}$$

În baza proprietăților de mai sus, se poate afirma că mulțimea $\mathbb{R} \cup \{-\infty\}$ echipată cu operațiile \oplus și \otimes are o structură algebrică de *semiinel idempotent comutativ* (Bacelli et al., 1992).

Operația de înmulțire \otimes definită prin (BT9.1.2) permite introducerea operației *de ridicare la putere* a unui element din mulțimea $\mathbb{R} \cup \{-\infty\}$ prin relația

$$a^0 = e, \quad a^j = \underbrace{a \otimes \ldots \otimes a}_{j \text{ factori}} = \underbrace{a + \ldots + a}_{j \text{ termeni}} = ja, \quad j \in \mathbb{N}, \ j \ge 1,$$
 (BT9.1.15)

ce poate fi apoi extinsă, în mod natural, la cazul

$$a^{1/j} = a/j, \quad j \in \mathbb{N}, \ j \ge 1.$$
 (BT9.1.16)

BT9.2 Operații cu matrice și vectori definiți pe algebra $(\mathbb{R} \cup \{-\infty\}, \max, +)$

Dacă *A*, *B* sunt două matrice dreptunghiulare de aceeași dimensiune (*m* x *n*), ale căror elemente aparțin mulțimii $\mathbb{R} \cup \{-\infty\}$, definim *matricea sumă* în raport cu operația \oplus prin:

$$\boldsymbol{C} = \boldsymbol{A} \,\tilde{\oplus} \, \boldsymbol{B},$$

$$(\boldsymbol{C})_{ij} = (\boldsymbol{A})_{ij} \,\oplus\, (\boldsymbol{B})_{ij} = \max\left\{ (\boldsymbol{A})_{ij}, (\boldsymbol{B})_{ij} \right\}, \ i = 1, \dots, m, \ j = 1, \dots, n$$
(BT9.2.1)

Dacă *A*, *B* sunt două matrice dreptunghiulare de dimensiuni $(m \ge n)$ și respectiv $(n \ge p)$, ale căror elemente aparțin mulțimii $\mathbb{R} \cup \{-\infty\}$, definim *matricea produs* în raport cu operatia $\tilde{\otimes}$ prin :

$$C = A \tilde{\otimes} B,$$

$$(C)_{ij} = (A)_{i1} \otimes (B)_{1j} \oplus ... \oplus (A)_{in} \otimes (B)_{nj} =$$

$$= \bigoplus_{k=1}^{n} ((A)_{ik} \otimes (B)_{kj}) = \max \{ (A)_{ik} + (B)_{kj} \}, \quad i = 1,...,m, \ j = 1,...,p.$$
(BT9.2.2)

Se observă cu uşurință că modul în care au fost definite matricele sumă și produs, se supune întrutotul regulilor standard cunoscute de cititor, cu excepția faptului că operația aditivă \oplus are semnificația de 'max', conform (BT9.1.1), iar operația multiplicativă \otimes are semnificația de '+', conform (BT9.1.2). Operațiile cu vectori constituie un caz particular al celor discutate relativ la matrice.

Să notăm prin M_{nxn} mulțimea matricelor pătrate de ordin *n* cu elemente din $\mathbb{R} \cup \{-\infty\}$. Mulțimea M_{nxn} echipată cu operația $\tilde{\oplus}$ definită conform (BT9.2.1) posedă următoarele proprietăți:

1) Legea internă:

$$\forall \boldsymbol{A}, \boldsymbol{B} \in \boldsymbol{M}_{nxn} : \boldsymbol{A} \stackrel{\sim}{\oplus} \boldsymbol{B} \in \boldsymbol{M}_{nxn} . \tag{BT9.2.3}$$

2) Comutativitate:

$$\forall \boldsymbol{A}, \boldsymbol{B} \in \boldsymbol{M}_{nxn} : \boldsymbol{A} \tilde{\oplus} \boldsymbol{B} = \boldsymbol{B} \tilde{\oplus} \boldsymbol{A}.$$
 (BT9.2.4)

3) Asociativitate:

$$\forall \boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C} \in \boldsymbol{M}_{nxn} : \left(\boldsymbol{A} \,\tilde{\oplus} \, \boldsymbol{B}\right) \tilde{\oplus} \, \boldsymbol{C} = \boldsymbol{A} \,\tilde{\oplus} \left(\boldsymbol{B} \,\tilde{\oplus} \, \boldsymbol{C}\right). \tag{BT9.2.5}$$

4) Existența matricei nule (neutre în raport cu \oplus):

F

$$\boldsymbol{\varepsilon} \in \boldsymbol{M}_{nxn}, \left(\boldsymbol{\varepsilon}\right)_{ij} = \boldsymbol{\varepsilon} = -\infty : \quad \forall \boldsymbol{A} \in \boldsymbol{M}_{nxn} : \boldsymbol{A} \,\tilde{\oplus} \, \boldsymbol{\varepsilon} = \boldsymbol{\varepsilon} \,\tilde{\oplus} \, \boldsymbol{A} \tag{BT9.2.6}$$

5) Idempotență:

$$\forall A \in M_{nxn} : A \oplus A = A.$$
 (BT9.2.7)

<u>Observație:</u> Proprietățile 1) - 5) enumerate anterior sunt valabile și în cazul mai general al mulțimii matricelor dreptunghiulare.

Mulțimea M_{nxn} echipată cu operația \oplus definită conform (BT9.2.2) posedă următoarele proprietăți:

1) Legea internă:

$$\forall A, B \in M_{nxn} : A \otimes B \in M_{nxn}.$$
(BT9.2.8)

2) Asociativitate:

$$\forall A, B, C \in M_{nxn} : (A \otimes B) \otimes C = A \otimes (B \otimes C).$$
(BT9.2.9)

3) Existența matricei unitare (neutre în raport cu $\tilde{\otimes}$):

$$\exists \boldsymbol{E} \in \boldsymbol{M}_{nxn}, (\boldsymbol{E})_{ij} = \boldsymbol{e} = 0, (\boldsymbol{E})_{ij} = \boldsymbol{\varepsilon} = -\infty : \boldsymbol{A} \otimes \boldsymbol{E} = \boldsymbol{E} \otimes \boldsymbol{A} = \boldsymbol{A}.$$
(BT9.2.10)

4) Matricea nulă ε este absorbantă în raport cu $\tilde{\otimes}$:

$$\forall A \in M_{nxn} : A \otimes \varepsilon = \varepsilon \otimes A = \varepsilon.$$
 (BT9.2.11)

De asemenea mai constatăm că operația multiplicativă $\tilde{\otimes}$ este distributivă în raport cu operația aditivă $\tilde{\oplus}$:

$$\forall A, B, C \in M_{nxn} : (A \oplus B) \otimes C = A \otimes C \oplus B \otimes C.$$
 (BT9.2.12)

Pentru $\alpha \in \mathbb{R} \cup \{-\infty\}$ și *A* o matrice dreptunghiulară (*m* x *n*) ale cărei elemente aparțin mulțimii $\mathbb{R} \cup \{-\infty\}$ definim operația (legea) externă:

$$\boldsymbol{B} = \alpha \,\hat{\otimes} \, \boldsymbol{A}, \, \left(\,\boldsymbol{B} \,\right)_{ij} = \alpha \,\otimes \, \left(\,\boldsymbol{A} \,\right)_{ij} = \alpha + \left(\,\boldsymbol{A} \,\right)_{ij}, \, i = 1, \dots, m, \, j = 1, \dots, n, \quad (\text{BT9.2.13})$$

care poartă denumirea de *înmulțire* a matricei A cu scalarul α .

Mulțimea M_{nxn} posedă următoarele proprietăți în raport cu operația externă de înmulțire cu scalari:

1)
$$\forall \alpha \in \mathbb{R} \cup \{-\infty\}, \forall A \in M_{nxn} : \alpha \otimes A \in M_{nxn}.$$
 (BT9.2.14)

178 — Aplicații ale rețelelor Petri – O. Păstrăvanu, M. Matcovschi, C. Mahulea —

2)
$$\forall \alpha, \beta \in \mathbb{R} \in \{-\infty\}, \forall A \in M_{nxn} : \alpha \,\hat{\otimes} \, (\beta \,\tilde{\otimes} \, A) = (\alpha \otimes \beta) \,\hat{\otimes} \, A. \quad (BT9.2.15)$$

3)
$$\forall \alpha, \beta \in \mathbb{R} \cup \{-\infty\}, \forall A \in M_{nxn} : (\alpha \oplus \beta) \hat{\otimes} A = \alpha \hat{\otimes} A \tilde{\oplus} \beta \hat{\otimes} A. \quad (BT9.2.16)$$

4)
$$\forall \alpha \in \mathbb{R} \cup \{-\infty\}, \forall A \in M_{nxn} : \alpha \otimes (A \oplus B) = \alpha \otimes A \oplus \alpha \otimes B.$$
 (BT9.2.17)

5)
$$\forall A \in M_{nxn} : e \hat{\otimes} A = A.$$
 (BT9.2.18)

$$\forall A \in M_{nxn} : \varepsilon \otimes A = \varepsilon. \tag{BT9.2.19}$$

<u>Observație</u>: Proprietățile 1) – 6) enumerate anterior sunt valabile și în cazul mai general al mulțimii matricelor dreptunghiulare.

În baza proprietăților de mai sus, se poate afirma că mulțimea M_{nxn} echipată cu operațiile interne \oplus , \otimes și respectiv, cu operația externă \otimes în raport cu $\mathbb{R} \cup \{-\infty\}$, are o structură de *algebră idempotentă* (Bacelli et al., 1992).

<u>Observație</u>: Pentru a simplifica notațiile, întrucât nu există pericol de confuzie începând din acest punct al expunerii, vom renunța la simbolurile \oplus , \otimes , \otimes și vom utiliza următoarea convenție de scriere:

- \oplus desemnează operația de adunare (BT9.1.1) din $\mathbb{R} \cup \{-\infty\}$ precum și operația de adunare (BT2.1) din mulțimea matricelor.
- ⊗ desemnează operația de înmulțire (BT9.1.2) din R∪ {-∞}, operația de înmulțire (BT9.2.2) din mulțimea matricelor, precum şi operația de înmulțire a unei matrice cu un scalar din R∪ {-∞} (BT9.2.13).

Sensul atribuit operațiilor \oplus , \otimes va reieși cu ușurință din contextul în care acestea vor apărea.

Similar cazului clasic, al matricelor cu elemente din mulțimea numerelor reale, și pentru o matrice pătratică A (de dimensiune $n \times n$) definită pe algebra max-plus se poate introduce *urma* acesteia, egală cu suma (în sensul algebrei max-plus) a elementelor de pe diagonala principală a matricei:

trace
$$A = \bigoplus_{i=1}^{n} (A)_{ii}$$
, (BT9.2.20)

la care se va face apel ulterior în paragraful BT9.4.

BT9.3 Reprezentări de stare în algebra max-plus pentru rețele Petri de tip graf marcat, temporizate *P*

Fie (N, M_0) o rețea Petri de tip graf marcat, având *m* poziții, $(p_j, j = 1,...,m)$, n_s tranziții sursă $(t_{i_s}, i_s = 1,...,n_s)$, n_r tranziții receptor $(t_{i_r}, i_r - 1,...,n_r)$ și *n* tranziții care sunt conectate atât prin arce de intrare, cât și prin arce de ieșire $(t_i, i = 1,...,n)$.

Temporizarea de tip *P* alocă fiecărei poziții p_j din graf durata $d_j \ge 0$, j = 1,...,m. Fiecare poziție p_j , j = 1,...,n, a grafului marcat impune o disciplină FIFO (*First In First Out*) pentru sosirea și respectiv plecarea jetoanelor (plecare ce, evident, are loc după consumarea duratei de rezervare $d_i \ge 0$ aferentă poziției p_i).

Se consideră că toate jetoanele marcajului inițial sunt utilizabile la momentul de start (convențional luat $\tau_0 = 0$), adică duratele de timp aferente rezervării acestor jetoane au fost consumate înainte de $\tau_0 = 0$.

Pentru a desemna momentul când are loc cea de a *k* executare a unei tranziții din graf, se utilizează variabilele de mai jos:

- $u_{i_s}(k)$ = precizează momentul de timp când tranziția sursă t_{i_s} , $i_s = 1, ..., n_s$, se execută pentru cea de-a k dată;
- $y_{i_r}(k)$ = precizează momentul de timp când tranziția receptor t_{i_r} , $i_r = 1, ..., n_r$, se execută pentru cea de a k dată;
- $x_i(k)$ = precizează momentul de timp când tranziția t_i , i = 1, ..., n, conectată atât prin arce de intrare cât și prin arce de ieșire, se execută pentru cea de a *k* dată.

<u>Observație</u>: Variabilele $x_i(k)$, $y_{i_r}(k)$ desemnează cel mai devreme moment când tranzițiile respective se pot executa în dinamica grafului marcat, adică orice tranziție validată este imediat executată (fără nici o întârziere între validare și executare).

Se construiesc următorii trei vectori ai căror elemente sunt momente de timp, cu semnificațiile detaliate anterior:

$$\boldsymbol{u}(k) = \begin{bmatrix} u_1(k) \\ \cdots \\ u_{n_s}(k) \end{bmatrix}, \quad \boldsymbol{x}(k) = \begin{bmatrix} x_1(k) \\ \cdots \\ x_n(k) \end{bmatrix}, \quad \boldsymbol{y}(t) = \begin{bmatrix} y_1(k) \\ \cdots \\ y_{n_r}(k) \end{bmatrix}. \quad (BT9.3.1)$$

unde dim $(\boldsymbol{u}) = n_s$, dim $(\boldsymbol{x}) = n$, dim $(\boldsymbol{y}) = n_r$.

Din modul de construcție a acestor vectori, rezultă inegalitățile vectoriale :

$$\forall k \in N : u(k) \le u(k+1), x(k) \le x(k+1), y(k) \le y(k+1).$$
 (BT9.3.2)

Apelând la o scriere vectorial-matriceală și utilizând operațiile \oplus (BT9.2.1), \otimes (BT9.2.2), între cei trei vectori (BT9.3.1), conținând momente de timp, pot fi evidențiate conexiuni de forma:

$$\mathbf{x}(k) = \mathbf{A}_{0} \otimes \mathbf{x}(k) \oplus \mathbf{A}_{1} \otimes \mathbf{x}(k-1) \oplus \dots \oplus \mathbf{A}_{M} \otimes \mathbf{x}(k-M) \oplus$$

$$\oplus \mathbf{B}_{0} \otimes \mathbf{u}(k) \oplus \mathbf{B}_{1} \otimes \mathbf{u}(k-1) \oplus \dots \oplus \mathbf{B}_{M_{s}} \mathbf{u}(k-M_{s}) =$$
(BT9.3.3)

$$= \bigoplus_{l=0}^{M} (\mathbf{A}_{l} \otimes \mathbf{x}(k-l)) \oplus \bigoplus_{l_{s}=0}^{M_{s}} (\mathbf{B}_{l_{s}} \otimes \mathbf{u}(k-l_{s})),$$

$$\mathbf{y}(k) = \mathbf{C}_{0} \otimes \mathbf{x}(k) \oplus \mathbf{C}_{1} \otimes \mathbf{x}(k-1) \oplus \dots \oplus \mathbf{C}_{M_{r}} \otimes \mathbf{x}(k-M_{r}) \oplus$$

$$\oplus \mathbf{D}_{0} \otimes \mathbf{u}(k) \oplus \mathbf{D}_{1} \otimes \mathbf{u}(k-1) \oplus \dots \oplus \mathbf{D}_{M_{rs}} \otimes \mathbf{u}(k-M_{rs}) =$$
(BT9.3.4)

$$= \bigoplus_{l_{r}=0}^{M_{r}} (\mathbf{C}_{l_{r}} \otimes \mathbf{x}(k-l_{r})) \oplus \bigoplus_{l_{rs}=0}^{M_{rs}} (\mathbf{D}_{l_{rs}} \otimes \mathbf{u}(k-l_{rs})).$$

unde:

- M notează numărul maxim de jetoane din marcajul inițial ce există într-o poziție precedată de o tranziție din grupul (t_i) și succedată tot de tranziție din grupul (t_i);
- M_s notează numărul maxim de jetoane din marcajul inițial ce există într-o poziție precedată de o tranziție din grupul (t_{i_s}) și succedată de o tranziție din grupul (t_i) ;
- M_r notează numărul maxim de jetoane din marcajul inițial ce există într-o poziție succedată de o tranziție din grupul (t_{i_r}) și precedată de o tranziție din grupul (t_i) ;
- M_{rs} notează numărul maxim de jetoane din marcajul inițial ce există într-o poziție precedată de o tranziție din grupul (t_{i_s}) și succedată de o tranziție din grupul (t_{i_s}) .

Matricele implicate în descrierea (BT9.3.3), (BT9.3.4) au dimensiuni adecvate pentru a permite efectuarea calculelor.

Elementele acestor matrice sunt fie valori nenegative cu semnificația de durate de timp (selectate, în baza topologiei rețelei, din setul $dj \ge 0$, j = 1, ..., m, corespunzător temporizării *P*), fie elementul nul $\varepsilon = -\infty$ (BT9.1.6) (care marchează, după caz, neimplicarea în bilanțul temporal, a unora dintre momentele de timp conținute în vectorii considerați).

În ecuațiile (BT9.3.3) și (BT9.3.4), valorile componentelor vectorilor u(1), u(2), u(3) etc. sunt cunoscute fiind date de momentele de timp când tranzițiile sursă (aparținând grupului (t_{i_c})) se execută pentru prima, a doua, a treia dată, etc.

Pe seama celor două ecuații (BT9.3.3) și (BT9.3.4) trebuie determinate valorile componentelor vectorilor x(1), x(2), x(3), etc. și, respectiv y(1), y(2), y(3), etc.

Ecuațiile (BT9.3.3) și (BT9.3.4) definesc o *reprezentare de stare max-plus*, sau o *reprezentare intrare–stare–ieșire max-plus* asociată unui graf marcat cu temporizare deterministă de tip *P*.

Această denumire provine, prin analogie cu descrierile liniare utilizate în automatica clasică, analogie în baza căreia vectorii u(k), x(k), y(k) definiți prin (BT9.3.1) sunt referiți drept vector de intrare, de stare și, respectiv, de ieșire. Atragem atenția asupra faptului că analogia invocată are în vedere doar formalismul teoretic, dar nu și semnificația fizică (deoarece în automatica clasică, componentele vectorilor u(k), x(k), y(k) și y(k) reprezintă valori ale unor semnale, iar k desemnează variabila temporală de tip discret).

Prezența în ecuația (BT9.3.3) a vectorilor $\mathbf{x}(k-l)$, l = 1,...,M, și $\mathbf{u}(k-l_s)$, $l_s = 0,...,M_s$, se explică prin faptul că momentul când o tranziție din grupul (t_i) , i = 1,...,n, se execută pentru a *k*-a dată este legat de momentele de timp când celelalte tranziții din grupul (t_i) , i = 1,...,n, și/sau tranzițiile din grupul (t_{i_s}) , $i_s = 1,...,n_s$, se execută pentru a k-l, respectiv $k-l_s$ dată. Această legătură este impusă de marcajul inițial al pozițiilor ce preced tranziția din grupul (t_i) , i = 1,...,n, pentru care se exprimă momentul de timp când are loc cea de a k executare.

În mod similar se explică prezența în ecuația (BT9.3.4) a vectorilor $\mathbf{x}(k-l_r), l_r = 1,...,M_r, \mathbf{u}(k-l_{rs}), l_{rs} = 0,...,M_{rs}$. În exprimarea momentului de timp când o tranziție din grupul (t_{i_r}) se execută pentru a *k* dată se ține cont de numărul de jetoane existente în marcajul inițial al fiecărei poziții ce precede respectiva tranziție.

În reprezentarea matriceal-vectorială (BT9.3.3) și (BT9.3.4), o parte din matricele $A_0, A_1, ..., A_{M-1}$; $B_0, B_1, ..., B_{M_s-1}, C_0, C_1, ..., C_{M_r-1}$; $D_0, D_1, ..., D_{M_{rs}-1}$ pot avea toate elementele nule, $\varepsilon = -\infty$, motiv pentru care produsele ce includ aceste matrice se elimină la scrierea concretă a ecuațiilor (BT9.3.3) și (BT9.3.4). Având în vedere semnificația elementelor nule $\varepsilon = -\infty$, într-o astfel de matrice putem face următoarele precizări:

- Pentru M ≥1 o matrice A_l, l = 1,..., M −1, are toate elementele nule, dacă și numai dacă toate pozițiile grafului marcat, precedate și succedate de tranziții din grupul (t_i) au marcajul inițial diferit de l.
- Pentru $M_s \ge 1$ o matrice B_{l_s} , $l_s = 0, ..., M_s 1$, are toate elementele nule, dacă și numai dacă toate pozițiile grafului marcat, precedate de tranziții din grupul (t_{i_s}) și succedate de tranziții din grupul (t_i) au marcajul inițial diferit de l_s .
- Pentru $M_r \ge 1$ o matrice C_{l_r} , $l_r = 0, ..., M_r 1$, are toate elementele nule, dacă și numai dacă toate pozițiile grafului marcat precedate de tranziții din grupul (t_i) și succedate de tranziții din grupul (t_{i_s}) au marcajul inițial diferit de l_r .
- Pentru $M_{rs} \ge 1$, o matrice $D_{l_{rs}}$, $l_{rs} = 0, ..., M_{rs} 1$, are toate elementele nule, dacă și numai dacă toate pozițiile grafului marcat precedate de o tranziție din grupul (t_{i_s}) și succedate de o tranziție din grupul (t_{i_s}) au marcajul inițial diferit de l_{rs} .

<u>Observație</u>: În ecuația de stare (BT9.3.3) matricea A_0 are întotdeauna diagonala formată din elemente nule, $\varepsilon = -\infty$, deoarece elementul generic $(A_0)_{ii}$, i = 1, ..., n servește în a lega momentul de timp $x_i(k)$ de el însuși.

BT9.4. Rezolvarea ecuației de stare

Prin rezolvarea ecuației de stare (BT9.3.3) se determină global, în manieră vectorială, momentele de timp când se execută fiecare din tranzițiile din grupul (t_i) , i = 1,...,n, pentru cea de a k dată, conform semnificației vectorului x(k) definit prin (BT9.3.1).

Pentru *k* vom considera valori naturale, k = 1,2,3,..., ceea ce semnifică prima, a doua, a treia, etc. executare a tuturor tranzițiilor din grupul (t_i) .

Înainte de a trece la procedura de rezolvare efectivă a ecuației (BT9.3.3), trebuie să observăm că această ecuație are o formă implicită în x(k) ori de câte ori matricea A_0 conține elemente nenule (diferite de $\varepsilon = -\infty$). Cu alte cuvinte, constatăm că x(k), ca vector, este exprimat în funcție de el însuși, în maniera:

$$\boldsymbol{x}(k) = \boldsymbol{A}_0 \otimes \boldsymbol{x}(k) \oplus \boldsymbol{v}(k) \tag{BT9.4.1}$$

unde v(k) este un vector ce notează suma tuturor termenilor din membrul drept al ecuației (BT9.3.2), mai puțin $A_0 \otimes x(k)$, adică :

$$\boldsymbol{v}(k) = \bigoplus_{l=1}^{M} (\boldsymbol{A}_{l} \otimes \boldsymbol{x}(k-l)) \oplus \bigoplus_{l_{s}=0}^{M_{s}} (\boldsymbol{B}_{l_{s}} \otimes \boldsymbol{u}(k-l_{s})).$$
(BT9.4.2)

Soluția x(k) a ecuației (BT.4.1) este de forma:

$$\mathbf{x}(k) = \mathbf{A}_0^* \otimes \mathbf{v}(k), \qquad (BT9.4.3)$$

unde:

$$A_0^* = E \oplus A_0 \oplus A_0^2 \oplus \ldots \oplus A_0^{n-1} = \bigoplus_{j=0}^{n-1} (A_0)^j,$$
 (BT9.4.4)

în care operația de ridicare la o putere naturală este definită pe baza operației de înmultire prin:

$$(\boldsymbol{A}_0)^0 = \boldsymbol{E}, \ (\boldsymbol{A}_0)^j = \underbrace{\boldsymbol{A}_0 \otimes \ldots \otimes \boldsymbol{A}_0}_{j \ge 1 \text{ factori}}$$
 (BT9.4.5)

Observație: Forma soluției (BT9.4.3) a ecuației (BT9 4.1) rezultă prin înlocuirea succesivă a lui x(k) din membrul drept al lui (BT9.4.1) cu expresia lui însuși x(k):

$$\mathbf{x}(k) = \mathbf{A}_0 \otimes \mathbf{x}(k) \oplus \mathbf{v}(k),$$

$$\mathbf{x}(k) = \mathbf{A}_0 \otimes [\mathbf{A}_0 \otimes \mathbf{x}(k) \oplus \mathbf{v}(k)] \oplus \mathbf{v}(k)$$

$$= \mathbf{A}_0^2 \otimes \mathbf{x}(k) \oplus (\mathbf{E} \oplus \mathbf{A}_0) \otimes \mathbf{v}(k),$$

$$\vdots$$

$$\mathbf{x}(k) = \mathbf{A}_0^n \otimes \mathbf{x}(k) \oplus (\mathbf{E} \oplus \mathbf{A}_0 \oplus \mathbf{A}_0^2 \oplus ... \oplus \mathbf{A}_0^{n-1}) \otimes \mathbf{v}(k).$$

(BT9.4.6)

Cum toate elementele de pe diagonala lui
$$A_0$$
 sunt nule, rezultă că A_0 este nilpotentă
măcar de ordinul *n*, adică $A_0^n = \varepsilon$ (toate elementele nule) și ultima egalitate din (BT9.4.6) va
furniza chiar soluția (BT9.4.3).

Construcția lui A_0^* introdusă în (BT9.4.4) definește operatorul * al lui Kleene, care, în general are forma:

$$\boldsymbol{A}_{0}^{*} = \bigoplus_{j=0}^{\infty} \left(\boldsymbol{A}_{0}\right)^{j}, \qquad (BT9.4.7)$$

dar în (BT9.4.4) avem $(A_0)^j = \varepsilon$ pentru $j \ge n$.

Întorcându-ne la rezolvarea ecuatiei (BT9.3.2), putem afirma că solutia acesteia este de forma:

$$\mathbf{x}(k) = \mathbf{v}(k)$$
, pentru $A_0 = \varepsilon$, (BT9.4.8-a)

și respectiv:

$$\mathbf{x}(k) = \mathbf{A}_0^* \otimes \mathbf{v}(k)$$
, pentru $\mathbf{A}_0 \neq \boldsymbol{\varepsilon}$, (BT9.4.8-b)

cu vectorul v(k) definit conform (BT9.4.2).

Considerând că rețeaua începe să funcționeze la momentul inițial, desemnat convențional drept $\tau_0 = 0$, examinarea ecuației (BT9.4.2) conduce la următoarele constatări:

• Pentru $1 \le k \le M$, v(k) include vectorii x(0), $x(-1), \dots, x(k-M)$ pentru care toate componentele sunt nule, $\varepsilon = -\infty$, deoarece contorizarea în secvență naturală, prin intermediul lui k, a executărilor de tranziții din grupul (t_i) începe de la momentul $\tau_0 = 0$. Evident, pentru M = 0 vectorii în cauză nu apar pentru nici un k.

- Pentru k > 1, v(k) include vectorii x(k-1), x(k-2),...,x(1) care au fost determinați la pașii anteriori și au componente mai mari sau egale cu zero.
- Pentru 1≤k≤M_s, v(k) include vectorii u(0), u(-1),...,u(k-M_s) pentru care toate componentele sunt nule, ε = -∞, deoarece contorizarea în secvență naturală, prin intermediul lui k, a executărilor de tranziții din grupul (t_{is}) începe de la momentul
 p. Evident pentru M = 0 vectorii în coură nu aner pentru nici un k

 $\tau_0 = 0$. Evident, pentru $M_s = 0$ vectorii în cauză nu apar pentru nici un k.

• Pentru $k \ge 1$, v(k) include vectorii cunoscuți $u(k) \ge u(k-1) \ge ... \ge u(1) \ge 0$, ale căror componente au valori numerice concrete.

Toate aceste constatări au un caracter general, depinzând de valoarea curentă a indicelui k, dar nu conțin nici o informație referitoare la executările de tranziții din grupul (t_i) care au loc chiar la momentul de start $\tau_0 = 0$ datorită marcajului inițial.

Să notăm prin $q_i \ge 0$ ordinul de validare al tranziției din grupul (t_i) , i = 1, ..., n, corespunzător marcajului inițial. Aceasta înseamnă că pentru fiecare tranziție t_i având $q_i \ge 1$, va trebui să obținem:

$$x_i(k) = 0, \ 1 \le k \le q_i$$
. (BT9.4.9)

Pe de altă parte, fiecare tranziție t_i având $q_i \ge 1$ este precedată de poziții ce conțin cel puțin $q_i \le \max\{M, M_s\}$ jetoane; aceasta înseamnă că pentru $1 \le k \le q_i$, scrierea implicită vectorial-matriceală (BT9.3.3) nu poate descrie executarea instantanee a tranzițiilor aflate în această situație. Altfel spus, satisfacerea condiției (BT9.4.9) nu poate fi obținută numai din valoarea $v_i(k)$, $1 \le k \le q_i$, dată de (BT9.4.2) conform formulei (BT9.4.8). Drept urmare, formula (BT9.4.8) trebuie modificată corespunzător pentru a include cele q_i executări ale tranziției t_i , i = 1, ..., n, care au loc la momentul de start $\tau_0 = 0$. Astfel, într-o formulare vectorială ce ține cont de toate componentele vectorului $\mathbf{x}(k)$, vom înlocui ecuațiile (BT9.4.8-a) și (BT9.4.8-b) prin:

$$\boldsymbol{x}(k) = \overline{\boldsymbol{x}}(k) \oplus \boldsymbol{v}(k)$$
, pentru $\boldsymbol{A}_0 = \boldsymbol{\varepsilon}$ (BT9.4.10-a)

și, respectiv:

$$\mathbf{x}(k) = A_0^* \otimes (\overline{\mathbf{x}}(k) \oplus \mathbf{v}(k)), \text{ pentru } A_0 \neq \varepsilon,$$
 (BT9.4.10-b)

cu vectorul v(k) definit conform (BT9.4.2) și vectorul $\bar{x}(k)$ definit prin componentele sale, în următoarea manieră:

$$\overline{x}_i(k) = \begin{cases} 0, & 1 \le k \le q_i, \\ \varepsilon, & k > q_i. \end{cases}$$
(BT9.4.11)

Evident, dacă tranziția t_i nu este validată la momentul de start $\tau_0 = 0$, atunci $\overline{x}_i(k) = \varepsilon$ pentru toate valorile k=1,2,3,...

<u>Observație:</u> Dacă notăm prin $q_{x \max}$ ordinul maxim de validare al tranzițiilor din grupul (t_i) , i = 1, ..., n, adică

$$q_{x\max} = \max_{i=1,\dots,n} \{q_i\}$$
 (BT9.4.12)

atunci, pentru orice $k > q_{x \max}$ vom avea $\overline{x}(k) = \varepsilon$, adică toate componentele lui $\overline{x}(k)$ vor fi nule, $\varepsilon = -\infty$. Cu alte cuvinte, pentru $k > q_{x \max}$, formula (BT9.4.10) se reduce la formula (BT9.4.8), vectorul $\bar{x}(k)$ intervenind numai în primele $q_{x\max}$ iterații.

În particular, dacă la momentul de start $\tau_0 = 0$, nici o tranziție din grupul (t_i) nu este validată, atunci vom avea $\bar{x}(k) = \varepsilon$ pentru orice k=1,2,3,..., sau, altfel spus, formula (BT9.4.10) este echivalentă cu formula (BT9.4.8). Atragem atenția că acest caz particular nu poate apărea atunci când nu există tranziții de tipul (t_{i_s}) (tranziții sursă), deoarece într-o atare situație cel puțin una din tranzițiile din grupul (t_i) , i = 1,...,n, trebuie să fie validată la momentul de start $\tau_0 = 0$ pentru a asigura dinamica grafului marcat.

Caz particular: Comportarea periodică a grafurilor marcate tare conexe, temporizate P

După cum s-a prezentat în paragraful BT6.6, grafurile marcate tare conexe au o comportare ciclică, durata unui ciclu de operare fiind precizată prin formula (BT6.6.3).

Modelul de stare al unui graf marcat tare conex este reprezentat de:

$$\mathbf{x}(k) = \mathbf{A}_0 \otimes \mathbf{x}(k) \oplus \mathbf{A}_1 \otimes \mathbf{x}(k-1) \oplus \dots \oplus \mathbf{A}_M \otimes \mathbf{x}(k-M) =$$

= $\bigoplus_{l=0}^{M} (\mathbf{A}_l \otimes \mathbf{x}(k-l)), \text{ pentru } \mathbf{A}_0 \neq \boldsymbol{\varepsilon},$ (BT9.4.13)

sau

$$\mathbf{x}(k) = \mathbf{A}_{1} \otimes \mathbf{x}(k-1) \oplus \dots \oplus \mathbf{A}_{M} \otimes \mathbf{x}(k-M) =$$

= $\bigoplus_{l=1}^{M} (\mathbf{A}_{l} \otimes \mathbf{x}(k-l)), \text{ pentru } \mathbf{A}_{0} = \mathbf{\varepsilon}.$ (BT9.4.14)

Ecuația implicită (BT9.4.13) poate fi, de asemenea, scrisă explicit:

$$\boldsymbol{x}(k) = \tilde{\boldsymbol{A}}_{l} \otimes \boldsymbol{x}(k-1) \oplus \ldots \oplus \tilde{\boldsymbol{A}}_{M} \otimes \boldsymbol{x}(k-M) = \bigoplus_{l=1}^{M} \left(\tilde{\boldsymbol{A}}_{l} \otimes \boldsymbol{x}(k-l) \right), \quad (BT9.4.15)$$

unde $\tilde{A}_l = A_0^* \otimes A_l, \ l = \overline{1, M}$.

Printr-o schimbare adecvată a vectorului de stare, ecuația (BT9.4.14) sau (BT9.4.15) poate fi în continuare adusă la forma:

$$\hat{\boldsymbol{x}}(k) = \boldsymbol{A} \otimes \hat{\boldsymbol{x}}(k-1), \qquad (BT9.4.16)$$

în care matricea A are dimensionea $N \ge N$, iar noul vector de stare $\hat{x}(k)$ (cu N elemente) conține (eventual) și unele dintre componentele vectorilor x(k-1), ..., x(k-M).

În cazul considerat aici matricea A are o singură valoare proprie λ (Bacelli et al, 1992)

$$\lambda = \bigoplus_{j=1}^{N} \left(\operatorname{trace} \left(\boldsymbol{A}^{j} \right) \right)^{1/j}, \qquad (BT9.4.17)$$

și, eventual, mai mulți vectori proprii x, care satisfac

$$A \otimes \mathbf{x} = \lambda \otimes \mathbf{x} \,. \tag{BT9.4.18}$$

Vectorii $\hat{x}(k)$, k > 1, corespunzători grafului marcat tare conex modelat prin ecuația (BT9.4.16), sunt vectori proprii asociați valorii proprii λ (BT9.4.17), astfel încât este satisfăcută relația:

$$\hat{\boldsymbol{x}}(k) = \lambda \otimes \hat{\boldsymbol{x}}(k-1) \quad \Leftrightarrow \quad \hat{x}_i(k) = \lambda + \hat{x}_i(k-1), \ i = \overline{1, N} . \tag{BT9.4.19}$$

Această relație arată că λ reprezintă tocmai *durata unui ciclu de operare* a grafului marcat tare conex luat în discuție.

BT9.5. Rezolvarea ecuației de ieșire

Prin rezolvarea ecuației de ieșire (BT9.3.4) se determină global, în maniera vectorială, momentele de timp când se execută fiecare din tranzițiile din grupul (t_{i_r}) , $i = 1, ..., n_r$, pentru cea de a *k* dată, conform semnificației vectorului y(k) definit prin (BT9.3.1). Pentru *k* vom considera valori naturale, k=1,2,3,..., ceea ce semnifică prima, a doua, a treia etc. executare a tuturor tranzițiilor din grupul (t_i) .

Considerând că rețeaua începe să funcționeze la momentul inițial, desemnat convențional drept $\tau_0 = 0$, examinarea membrului drept al ecuației (BT9.3.4) conduce la următoarele constatări:

- Pentru 1≤k≤M_r, y(k) include vectorii x(0), x(-1),...,x(k-M_r) pentru care toate componentele sunt nule ε = -∞, deoarece contorizarea în secvență naturală, prin intermediul lui k, a executărilor de tranziții din grupul (t_i) începe la momentul τ₀ = 0. Evident, pentru M_r = 0, vectorii în cauză nu apar pentru nici un k.
- Pentru $k \ge 1$, y(k) include vectorii x(k), x(k-1),...,x(1) care au fost determinați din rezolvarea ecuației de stare (BT9.3.3).
- Pentru 1≤k≤M_{rs}, y(k) include vectorii u(0), u(-1),...,u(k-M_{rs}) pentru care toate componentele sunt nule, ε = -∞, deoarece contorizarea în secvență naturală, prin intermediul lui k, a executărilor de tranziții din grupul t_{is} începe la momentul τ₀ = 0. Evident, pentru M_{rs} = 0, vectorii în cauză nu apar pentru nici un k.
- Pentru $k \ge 1$, y(k) include vectorii cunoscuți $u(k) \ge u(k-1) \ge ... \ge u(1) \ge 0$, ale căror componente au valori numerice concrete.

Toate aceste constatări au un caracter general, depinzând de valoarea cunoscută a indicelui k, dar nu conțin nici o informație referitoare la executările de tranziții din grupul (t_{i_r}) care au loc la momentul de start $\tau_0 = 0$ datorită marcajului inițial.

Să notăm prin $q_{i_r} \ge 0$ ordinul de validare al tranziției (t_{i_r}) , $i = 1, ..., n_r$, corespunzător marcajului inițial. Aceasta înseamnă că pentru fiecare tranziție t_{i_r} având $q_{i_r} \ge 1$, va trebui să obținem:

$$y_{i_r}(k) = 0, \ 1 \le k \le q_{i_r}$$
 (BT9.5.1)

Raționând la fel în cazul tranzițiilor din grupul (t_i) , i = 1,...,n, luat în discuție în secțiunea precedentă, ajungem la concluzia că rezolvarea ecuației de ieșire (BT9.3.4) necesită adăugarea, în membrul drept al acesteia, a unui vector suplimentar $\overline{y}(k)$, având componentele:

$$\overline{y}_{i_r}(k) = \begin{cases} 0, \ 1 \le k \le q_{i_r}, \\ \varepsilon, \ k > q_{i_r}, \end{cases} \quad i_r = 1, \dots, n_r, \qquad (BT9.5.2)$$

care este responsabil de înregistrarea executărilor de tranziții datorate în exclusivitate marcajului inițial. În baza acestei concluzii, rezultă că ecuația de ieșire (BT9.3.4) se rezolvă cu ajutorul formulei cu scrierea vectorială:

$$\boldsymbol{y}(k) = \overline{\boldsymbol{y}}(k) \oplus \bigoplus_{l_r=0}^{M_r} (\boldsymbol{C}_{l_r} \otimes \boldsymbol{x}(k-l_r)) \oplus \bigoplus_{l_{rs}=0}^{M_{rs}} (\boldsymbol{D}_{l_{rs}} \otimes \boldsymbol{u}(k-l_{rs})).$$
(BT9.5.3)

<u>Observație</u>: Dacă notăm prin $q_{y \max}$ ordinul maxim de validare al tranzițiilor din grupul (t_{i_r}) , $i_r = 1, ..., n_r$, adică

$$q_{y\max} = \max_{i_r=1,\dots,n_r} \{q_{i_r}\},$$
 (BT9.5.4)

atunci, pentru orice $k > q_{ymax}$ vom avea $\overline{y}(k) = \varepsilon$, adică toate componentele lui $\overline{y}(k)$ vor fi nule, $\varepsilon = -\infty$. Cu alte cuvinte, pentru $k > q_{ymax}$, formula (BT9.5.3) se reduce chiar la ecuația de ieșire (BT9.3.4), vectorul $\overline{y}(k)$ intervenind numai în primele q_{ymax} iterații. În particular, dacă la momentul de start $\tau_0 = 0$, nici o tranziție din grupul (t_{i_r}) nu este validată, atunci vom avea $\overline{y}(k) = \varepsilon$ pentru orice k = 1, 2, 3, ..., sau, altfel spus, formula de rezolvare (BT9.5.3) este identică cu ecuația de ieșire (BT9.3.4).

Construcția modelului max-plus este ilustrată prin AP9.1 – AP9.4, rezolvarea ecuației de stare este ilustrată prin AP9.1 – AP9.4, iar rezolvarea ecuației de ieșire este ilustrată prin AP9.1 și AP9.4.

Aplicații

AP9.1.

Se consideră rețelele Petri de tip graf marcat cu temporizare *P* reprezentate în fig. AP9.1.1.(a, b, c, d), în care durata de timp asignată poziției p_i este notată d_i , $i = \overline{1, 4}$. Pentru fiecare dintre acestea să se abordeze următoarea problematică:

- 1. Să se construiască reprezentarea de stare max-plus asociată.
- 2. Să se expliciteze expresiile variabilelor de stare și de ieșire de așa manieră încât să se evidențieze modul lor de calcul iterativ.

<u>Soluție</u>

- A. Pentru rețeaua din fig. AP 9.1.1.(a) se obțin următoarele rezultate:
- 1. Forma implicită a reprezentării de stare max-plus asociate rețelei este:

$$\begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} = \begin{bmatrix} \varepsilon & \varepsilon \\ d_2 & \varepsilon \end{bmatrix} \otimes \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} \oplus \begin{bmatrix} d_1 \\ \varepsilon \end{bmatrix} \otimes u(t),$$
$$y(k) = \begin{bmatrix} \varepsilon & d_3 \end{bmatrix} \otimes \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix}.$$

2. Pentru matricea $A_0 = \begin{bmatrix} \varepsilon & \varepsilon \\ d_2 & \varepsilon \end{bmatrix}$ se obține $A_0^* = \mathbf{E} \oplus A_0 = \begin{bmatrix} 0 & \varepsilon \\ d_2 & 0 \end{bmatrix}$ prin aplicarea

operatorului Kleene. Cu aceasta, putem obține $\mathbf{x}(k) = \mathbf{A}_0^* \otimes \mathbf{v}(k)$, unde $\mathbf{v}(k) = \begin{bmatrix} d_1 \\ \varepsilon \end{bmatrix} \otimes u(k)$. Astfel avem:

Fig. AP9.1.1. Grafurile marcate temporizate P utilizate în AP9.1.

$$\begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} = \begin{bmatrix} 0 & \varepsilon \\ d_2 & 0 \end{bmatrix} \otimes \begin{bmatrix} d_1 \\ \varepsilon \end{bmatrix} \otimes u(k) = \begin{bmatrix} d_1 \\ d_1 \otimes d_2 \end{bmatrix} \otimes u(k),$$
$$y(k) = \begin{bmatrix} \varepsilon & d_3 \end{bmatrix} \otimes \begin{bmatrix} d_1 \\ d_1 \otimes d_2 \end{bmatrix} \otimes u(k) = (d_1 \otimes d_2 \otimes d_3) \otimes u(k).$$

Ne aflăm în posesia tuturor informațiilor pentru a explicita formulele de calcul iterativ $x_1(k) = d_1 \otimes u(k) = d_1 + u(k)$,

$$x_{1}(k) = (d_{1} \otimes d_{2}) \otimes u(k) = (d_{1} + d_{2}) + u(k), \qquad k = 1, 2, \dots$$

$$y(k) = (d_{1} \otimes d_{2} \otimes d_{3}) \otimes u(k) = (d_{1} + d_{2} + d_{3}) + u(k),$$

187

B. Pentru rețeaua din fig. AP 9.1.1.(b) se obțin următoarele rezultate:

1. Forma implicită a reprezentării de stare max-plus asociate rețelei este:

$$\begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} = \begin{bmatrix} \varepsilon & \varepsilon \\ d_2 & \varepsilon \end{bmatrix} \otimes \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + \begin{bmatrix} \varepsilon & d_4 \\ \varepsilon & \varepsilon \end{bmatrix} \otimes \begin{bmatrix} x_1(k-1) \\ x_2(k-1) \end{bmatrix} \oplus \begin{bmatrix} d_1 \\ \varepsilon \end{bmatrix} \otimes u(t),$$
$$y(k) = \begin{bmatrix} \varepsilon & d_3 \end{bmatrix} \otimes \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix}.$$

2. Cu aceleași matrice A_0 și A_0^* de la punctul A.2, din relația $\mathbf{x}(k) = A_0^* \otimes \mathbf{v}(k)$ cu

$$\mathbf{v}(k) = \begin{bmatrix} \varepsilon & d_4 \\ \varepsilon & \varepsilon \end{bmatrix} \otimes \begin{bmatrix} x_1(k-1) \\ x_2(k-1) \end{bmatrix} \oplus \begin{bmatrix} d_1 \\ \varepsilon \end{bmatrix} \otimes u(k) ,$$

se obține:

$$\begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} = \begin{bmatrix} 0 & \varepsilon \\ d_2 & 0 \end{bmatrix} \otimes \left\{ \begin{bmatrix} \varepsilon & d_4 \\ \varepsilon & \varepsilon \end{bmatrix} \otimes \begin{bmatrix} x_1(k-1) \\ x_2(k-1) \end{bmatrix} \oplus \begin{bmatrix} d_1 \\ \varepsilon \end{bmatrix} \otimes u(k) \right\},$$
$$y(k) = \begin{bmatrix} \varepsilon & d_3 \end{bmatrix} \otimes \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix}.$$

Pentru k = 1, ținem cont de faptul că $x_1(0) = x_2(0) = \varepsilon$ și, efectuând calculele, rezultă:

$$x_{1}(1) = d_{1} \otimes u(1) = d_{1} + u(1),$$

$$x_{2}(1) = (d_{1} \otimes d_{2}) \otimes u(1) = (d_{1} + d_{2}) + u(1),$$

$$y(1) = (d_{3} \otimes (d_{1} \otimes d_{2})) \otimes u(1) = (d_{1} + d_{2} + d_{3}) + u(1).$$

Odată ce $x_1(1)$ și $x_2(1)$ au fost determinați, pentru $k \ge 2$ se poate formula modul de calcul iterativ:

$$x_{1}(k) = d_{4} \otimes x_{2}(k-1) \oplus d_{1} \otimes u(k) = \max \{ d_{4} + x_{2}(k-1), d_{1} + u(k) \},$$

$$x_{2}(k) = d_{2} \otimes [d_{4} \otimes x_{2}(k-1) \oplus d_{1} \otimes u(k)] = d_{2} + \max \{ d_{4} + x_{2}(k-1), d_{1} + u(k) \},$$

$$y(k) = d_{3} \otimes d_{2} \otimes [d_{4} \otimes x_{2}(k-1) \oplus d_{1} \otimes u(k)] = (d_{3} + d_{2}) + \max \{ d_{4} + x_{2}(k-1), d_{1} + u(k) \},$$

pentru $k = 2, 3, ...$

C. Pentru rețeaua din fig. AP 9.1.1.(c) se obțin următoarele rezultate:

1. Forma implicită a reprezentării de stare max-plus asociate rețelei este:

$$\begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} = \begin{bmatrix} \varepsilon & \varepsilon \\ d_2 & \varepsilon \end{bmatrix} \otimes \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} \oplus \begin{bmatrix} \varepsilon & d_4 \\ \varepsilon & \varepsilon \end{bmatrix} \otimes \begin{bmatrix} x_1(k-2) \\ x_2(k-2) \end{bmatrix} \oplus \begin{bmatrix} d_1 \\ \varepsilon \end{bmatrix} \otimes u(t),$$
$$y(k) = \begin{bmatrix} \varepsilon & d_3 \end{bmatrix} \otimes \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix}.$$

2. Cu aceleași matrice A_0 și A_0^* de la punctul A.2, putem scrie $\mathbf{x}(k) = A_0^* \otimes \mathbf{v}(k)$ cu

$$\mathbf{v}(k) = \begin{bmatrix} \varepsilon & d_4 \\ \varepsilon & \varepsilon \end{bmatrix} \otimes \begin{bmatrix} x_1(k-2) \\ x_2(k-2) \end{bmatrix} \oplus \begin{bmatrix} d_1 \\ \varepsilon \end{bmatrix} \otimes u(k) \, .$$

Astfel avem:

— Cap. 9. Modele de tip max-plus ——

$$\begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} = \begin{bmatrix} 0 & \varepsilon \\ d_2 & 0 \end{bmatrix} \otimes \left\{ \begin{bmatrix} \varepsilon & d_4 \\ \varepsilon & \varepsilon \end{bmatrix} \otimes \begin{bmatrix} x_1(k-2) \\ x_2(k-2) \end{bmatrix} \oplus \begin{bmatrix} d_1 \\ \varepsilon \end{bmatrix} \otimes u(k) \right\},$$
$$y(k) = \begin{bmatrix} \varepsilon & d_3 \end{bmatrix} \otimes \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix}.$$

Pentru k = 1 și k = 2 vom ține cont de faptul că $x_1(-1) = x_2(-1) = \varepsilon$ și respectiv, $x_1(0) = x_2(0) = \varepsilon$. Din efectuarea calculelor rezultă, pentru k = 1:

$$x_{1}(1) = d_{1} \otimes u(1) = d_{1} + u(1),$$

$$x_{2}(1) = (d_{1} \otimes d_{2}) \otimes u(1) = (d_{1} + d_{2}) + u(1),$$

$$y_{3}(1) = (d_{3} \otimes (d_{1} \otimes d_{2})) \otimes u(1) = (d_{1} + d_{2} + d_{3}) + u(1),$$

și respectiv, pentru k = 2:

$$\begin{aligned} x_1(2) &= d_1 \quad \otimes u(2) = d_1 + u(2), \\ x_2(2) &= \left(d_1 \otimes d_2\right) d_2 \quad \otimes u(1) = \left(d_1 + d_2\right) + u(2), \\ y_3(2) &= \left(d_3 \quad \otimes (d_1 \otimes d_2)\right) \quad \otimes u(2) = \left(d_1 + d_2 + d_3\right) + u(2). \end{aligned}$$

Odată ce $x_1(1)$, $x_2(1)$, $x_1(2)$ și $x_2(2)$ au fost determinați, pentru $k \ge 3$ se poate formula modul de calcul iterativ:

$$\begin{aligned} x_1(k) &= d_4 \otimes x_2(k-2) \oplus d_1 \otimes u(k) = \max \left\{ d_4 + x_2(k-2), \, d_1 + u(k) \right\}, & k = 3, 4, \dots \\ x_2(k) &= d_2 \otimes \left[d_4 \otimes x_2(k-2) \oplus d_1 \otimes u(k) \right] = d_2 + \max \left\{ d_4 + x_2(k-2), \, d_1 + u(k) \right\}, \\ y(k) &= d_3 \otimes d_2 \otimes \left[d_4 \otimes x_2(k-2) \oplus d_1 \otimes u(k) \right] = \left(d_3 + d_2 \right) + \max \left\{ d_4 + x_2(k-2), \, d_1 + u(k) \right\}. \end{aligned}$$

D. Pentru rețeaua din fig. AP 9.1.1.(d) se obțin următoarele rezultate:

1. Forma implicită a reprezentării de stare max-plus asociate rețelei este:

$$\begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} = \begin{bmatrix} \varepsilon & \varepsilon \\ d_2 & \varepsilon \end{bmatrix} \otimes \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} \oplus \begin{bmatrix} \varepsilon & d_4 \\ \varepsilon & \varepsilon \end{bmatrix} \otimes \begin{bmatrix} x_1(k-1) \\ x_2(k-1) \end{bmatrix} \oplus \begin{bmatrix} d_1 \\ \varepsilon \end{bmatrix} \otimes u(k-1),$$
$$y(k) = \begin{bmatrix} \varepsilon & d_3 \end{bmatrix} \otimes \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix}.$$

2. Cu aceleași matrice A_0 și A_0^* de la punctul A.2, putem scrie $\mathbf{x}(k) = A_0^* \otimes [\bar{\mathbf{x}}(k) \oplus \mathbf{v}(k)]$ unde

$$\mathbf{v}(k) = \begin{bmatrix} \varepsilon & d_4 \\ \varepsilon & \varepsilon \end{bmatrix} \otimes \begin{bmatrix} x_1(k-1) \\ x_2(k-1) \end{bmatrix} \oplus \begin{bmatrix} d_1 \\ \varepsilon \end{bmatrix} \otimes u(k-1)$$

iar $\overline{x}(k)$ este responsabil de executarea tranzițiilor asociate variabilelor de stare, ce sunt validate la momentul inițial.

Astfel avem:

$$\begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} = \begin{bmatrix} 0 & \varepsilon \\ \varepsilon & 0 \end{bmatrix} \otimes \left\{ \begin{bmatrix} \overline{x}_1(k) \\ \overline{x}_2(k) \end{bmatrix} \oplus \begin{bmatrix} \varepsilon & d_4 \\ \varepsilon & \varepsilon \end{bmatrix} \otimes \begin{bmatrix} x_1(k-1) \\ x_2(k-1) \end{bmatrix} \oplus \begin{bmatrix} d_1 \\ d_2 \end{bmatrix} \otimes u(k-1) \right\},$$

$$y(k) = \begin{bmatrix} \varepsilon & d_3 \end{bmatrix} \otimes \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix}.$$

Cum la momentul inițial este validată numai tranziția t_2 și ordinul de validare este 1, înseamnă că pentru $\overline{x}(k)$ putem scrie

$$\begin{bmatrix} \overline{x}_1(1) \\ \overline{x}_2(1) \end{bmatrix} = \begin{bmatrix} 0 \\ \varepsilon \end{bmatrix} \quad \text{si} \quad \begin{bmatrix} \overline{x}_1(k) \\ \overline{x}_2(k) \end{bmatrix} = \begin{bmatrix} \varepsilon \\ \varepsilon \end{bmatrix}, \ k \ge 2.$$

Totodată, pentru k = 1 vom ține cont de faptul că $x_1(0) = x_2(0) = \varepsilon$ și $u_1(0) = \varepsilon$. Din efectuarea calculelor, rezultă, pentru k = 1:

$$x_1(1) = 0,$$

 $x_2(1) = d_2,$
 $y_3(1) = d_3 \otimes d_2 = d_3 + d_2$

Odată ce $x_1(1)$ și $x_2(1)$ au fost determinați, pentru $k \ge 2$ se poate formula modul de calcul iterativ:

 $\begin{aligned} x_1(k) &= d_4 \otimes x_2(k-1) \oplus d_1 \otimes u(k-1) = \max \left\{ d_4 + x_2(k-1), \, d_1 + u(k-1) \right\}, \\ x_2(k) &= d_2 \otimes \left[d_4 \otimes x_2(k-1) \oplus d_1 \otimes u(k-1) \right] = d_2 + \max \left\{ d_4 + x_2(k-1), \, d_1 + u(k-1) \right\}, \\ y(k) &= d_3 \otimes d_2 \otimes \left[d_4 \otimes x_2(k-1) \oplus d_1 \otimes u(k-1) \right] = \left(d_3 + d_2 \right) + \max \left\{ d_4 + x_2(k-1), \, d_1 + u(k-1) \right\}. \end{aligned}$ pentru $k = 2, 3, \dots$

AP9.2.

Se consideră rețelele Petri din fig. AP9.2.1. Pentru fiecare dintre acestea să se abordeze următoarea problematică:

- 1. Să se construiască reprezentarea de stare max-plus asociată.
- 2. Să se expliciteze expresiile variabilelor de stare de așa manieră încât să se evidențieze modul lor de calcul iterativ.
- 3. Să se constate instalarea unui regim de funcționare periodic și să se precizeze perioada.

Fig. AP9.2.1. Grafurile marcate temporizate P utilizate în AP9.2

<u>Soluție</u>

A. Pentru rețeaua din fig. AP 9.2.1.(a) se obțin următoarele rezultate:

1. Forma implicită a reprezentării de stare max-plus asociate rețelei este:

$$\begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} = \begin{bmatrix} \varepsilon & \varepsilon \\ 3 & \varepsilon \end{bmatrix} \otimes \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} \oplus \begin{bmatrix} \varepsilon & 2 \\ \varepsilon & \varepsilon \end{bmatrix} \otimes \begin{bmatrix} x_1(k-1) \\ x_2(k-1) \end{bmatrix}.$$

2. Aplicând operatorul Kleene matricei $A_0 = \begin{bmatrix} \varepsilon & \varepsilon \\ 3 & \varepsilon \end{bmatrix}$ se obține $A_0^* = E \oplus A_0 = \begin{bmatrix} 0 & \varepsilon \\ 3 & 0 \end{bmatrix}$. Cu aceasta, putem scrie $\mathbf{x}(k) = A_0^* \otimes (\overline{\mathbf{x}}(k) \oplus \mathbf{v}(k))$, unde $\mathbf{v}(k) = \begin{bmatrix} \varepsilon & 2 \\ \varepsilon & \varepsilon \end{bmatrix} \otimes \begin{bmatrix} x_1(k-1) \\ x_2(k-1) \end{bmatrix}$, iar $\overline{\mathbf{x}}(k)$ este responsabil de executarea tranzițiilor validate la momentul inițial.

Astfel avem:

$$\begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} = \begin{bmatrix} 0 & \varepsilon \\ 3 & 0 \end{bmatrix} \otimes \left\{ \begin{bmatrix} \overline{x}_1(k) \\ \overline{x}_2(k) \end{bmatrix} \oplus \begin{bmatrix} \varepsilon & 2 \\ \varepsilon & \varepsilon \end{bmatrix} \otimes \begin{bmatrix} x_1(k-1) \\ x_2(k-1) \end{bmatrix} \right\}.$$

Cum la momentul inițial este validată numai tranziția t_1 și ordinul de validare este 1, înseamnă că pentru $\overline{\mathbf{x}}(k)$ putem scrie:

$$\begin{bmatrix} \overline{x}_1(1) \\ \overline{x}_2(1) \end{bmatrix} = \begin{bmatrix} 0 \\ \varepsilon \end{bmatrix} \quad \text{si} \quad \begin{bmatrix} \overline{x}_1(k) \\ \overline{x}_2(k) \end{bmatrix} = \begin{bmatrix} \varepsilon \\ \varepsilon \end{bmatrix}, \ k \ge 2.$$

Totodată, pentru k = 1 vom ține cont de faptul că $x_1(0) = x_2(0) = \varepsilon$. Din efectuarea calculelor, rezultă, pentru k = 1:

$$x_1(1) = 0,$$

 $x_2(1) = 3.$

Odată ce $x_1(1)$ și $x_2(1)$ au fost determinați, pentru $k \ge 2$ se poate formula modul de calcul iterativ:

$$x_1(k) = x_1(k-1) \oplus 2 \otimes x_2(k-1) = \max \{x_1(k-1), 2 + x_2(k-1)\}, \\ x_2(k) = 5 \otimes x_2(k-1) = 5 + x_2(k-1), \\ k = 2, 3, \dots$$

3. Dând valori lui *k*, observăm că executările tranzițiilor au loc la momentele de timp $x_1(k)$, $x_2(k)$:

k	1	2	3	4	 k
$x_1(k)$	0	5	10	15	 5(k-1)
$x_2(k)$	3	8	13	18	 5k - 2

Se constată instalarea unui regim periodic, cu perioada de 5 unități de timp.

B. Pentru rețeaua din fig. AP 9.2.1.(b) se obțin următoarele rezultate:

1. Reprezentarea de stare max-plus asociată rețelei este:

$$\begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} = \begin{bmatrix} \varepsilon & 2 \\ 3 & \varepsilon \end{bmatrix} \otimes \begin{bmatrix} x_1(k-1) \\ x_2(k-1) \end{bmatrix}.$$

2. Întrucât ecuația de stare rezultă direct în forma explicită (adică x(k) nu depinde de el însuși ca în cazul rețelei din fig. AP9.2.1.(a)), se obține $x(k) = \overline{x}(k) \oplus v(k)$, unde $\overline{x}(k)$ este responsabil

- 191

de executarea tranzițiilor validate la momentul inițial, iar $v(k) = \begin{bmatrix} \varepsilon & 2 \\ 3 & \varepsilon \end{bmatrix} \otimes \begin{bmatrix} x_1(k-1) \\ x_2(k-1) \end{bmatrix}$. Astfel

avem:

$$\begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} = \begin{bmatrix} \overline{x}_1(k) \\ \overline{x}_2(k) \end{bmatrix} \oplus \begin{bmatrix} \varepsilon & 2 \\ 3 & \varepsilon \end{bmatrix} \otimes \begin{bmatrix} x_1(k-1) \\ x_2(k-1) \end{bmatrix}.$$

Cum la momentul inițial sunt validate ambele tranziții t_1 și t_2 , iar ordinul de validare al fiecăreia dintre ele este 1, înseamnă că pentru $\overline{x}(k)$ putem scrie:

$$\begin{bmatrix} \overline{x}_1(1) \\ \overline{x}_2(1) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \text{si} \quad \begin{bmatrix} \overline{x}_1(k) \\ \overline{x}_2(k) \end{bmatrix} = \begin{bmatrix} \varepsilon \\ \varepsilon \end{bmatrix}, \ k \ge 2.$$

Totodată, pentru k = 1 vom ține cont de faptul că $x_1(0) = x_2(0) = \varepsilon$. Din efectuarea calculelor, rezultă, pentru k = 1:

$$x_1(1) = 0, \qquad x_2(1) = 0$$

Odată ce $x_1(1)$ și $x_2(1)$ au fost determinați, pentru $k \ge 2$ se poate formula modul de calcul iterativ:

$$\begin{aligned} x_1(k) &= 2 \otimes x_2(k-1) = 2 + x_2(k-1), \\ x_2(k) &= 3 \otimes x_1(k-1) = 3 + x_1(k-1), \end{aligned}$$
 $k = 2, 3, \ldots$

3. Dând valori lui k, observăm că executările tranzițiilor au loc la momentele de timp

k	1	2	3	4	5	6	7	 21	2 <i>l</i> +1
$x_1(k)$	0	2	5	7	10	12	15	 5(<i>l</i> -1)+2	51
$x_2(k)$	0	3	5	8	10	13	15	 5(<i>l</i> -1)+3	51

Se constată instalarea unui regim periodic, astfel că într-un interval de 5 [unități de timp] au loc câte două executări ale tranzițiilor t_1 și t_2 . Putem astfel considera că funcționarea ciclică se realizează cu o perioadă T = 2,5 [unități de timp] (în sensul că frecvența de executare a tranzițiilor rețelei este f = 0,4 [unități de timp⁻¹]).

<u>Observație</u>: Așa cum era de așteptat, funcționarea ciclică a celor două rețele evidențiază aceleași valori pentru perioade care au fost determinate și în contextul capitolului 6, anume **AP6.1**.

AP9.3.

Se consideră protocolul de comunicații a cărui funcționare a fost studiată în **AP6.2** (păstrând aceleași valori pentru duratele de timp asignate tuturor pozițiilor).

- 1. Să se construiască reprezentarea de stare max-plus asociată.
- 2. Să se expliciteze expresiile variabilelor de stare și de ieșire de așa manieră încât să se evidențieze modul lor de calcul iterativ.
- 3. Să se realizeze reprezentarea grafică a momentelor de timp la care începe transmisia unui mesaj de către emițător (E) și transmisia semnalului ACK de către receptor (R), utilizând mediul *Petri Net Toolbox*.

<u>Soluție</u>

1. Modelul utilizat pentru construirea reprezentării de stare max-plus a protocolului de comunicații studiat este prezentat în fig. AP9.3.1, în care sunt evidențiate duratele de timp asignate pozițiilor rețelei, iar pentru desemnarea tranzițiilor t_i se folosește direct numele variabilelor de stare x_i , i = 1, ..., 6.

Fig. AP9.3.1. Graful marcat cu temporizare P studiat în AP9.3.

Considerând vectorul $\mathbf{x}(k) = [x_1(k) \cdots x_6(k)]^T$ având drept componente momentele de timp $x_i(k)$ la care se execută pentru cea de a *k*-a dată tranziția t_i , i = 1,...,6, modelul de stare în algebra max-plus, în formă implicită, este dat de:

$$\mathbf{x}(k) = \mathbf{A}_0 \otimes \mathbf{x}(k) \oplus \mathbf{A}_1 \otimes \mathbf{x}(k-1),$$

unde:

	E	Е	Е	Е	Е	Ē		E	Е	6	Е	Е	\mathcal{E}
	3	Е	Е	Е	Е	Е		Е	Е	Е	Е	5	ε
1 -	Е	Е	Е	Е	Е	1	1 -	Е	Е	Е	Е	Е	ε
$A_0 =$	Е	7	Е	Е	Е	Е	, л ₁ –	Е	Е	Е	Е	Е	ε
	Е	Е	Е	2	Е	Е		Е	Е	Е	Е	Е	ε
	4	Е	Е	8	Е	Е		Е	Е	Е	Е	Е	ε

2. Vectorul x(k) se determină utilizând relația

 $\mathbf{x}(k) = \mathbf{A}_0^* \otimes \left(\overline{\mathbf{x}}(k) \oplus \mathbf{v}(k) \right), \quad k = 1, 2, 3, \dots$

unde $v(k) = A_1 \otimes x(k-1)$, iar $\overline{x}(k)$ este responsabil de executarea tranzițiilor validate la momentul inițial. Singura tranziție 1-validată la momentul inițial $\tau_0 = 0$ este t_1 , astfel încât vectorul $\overline{x}(k)$ este dat de $\overline{x}(1) = \begin{bmatrix} 0 & \varepsilon & \varepsilon & \varepsilon & \varepsilon \end{bmatrix}^T$ și $\overline{x}(k) = \begin{bmatrix} \varepsilon & \varepsilon & \varepsilon & \varepsilon \end{bmatrix}^T$, $k \ge 2$, în conformitate cu algoritmul prezentat în BT9.4.

Deoarece $\mathbf{x}(0) = \begin{bmatrix} \varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon \end{bmatrix}^T$, rezultă $\mathbf{x}(1) = \begin{bmatrix} 0 & 3 & 19 & 10 & 12 & 18 \end{bmatrix}^T$. Cunoscând $\mathbf{x}(1)$, în continuare se pot calcula valorile $\mathbf{x}(k)$, cu $k \ge 2$, după cum urmează. Se aplică operatorul Kleene matricei A_0 și se determină matricea $A = A_0^* \otimes A_1$, obținându-se

$$\boldsymbol{A}_{0}^{*} = \begin{bmatrix} 0 & \varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon \\ 3 & 0 & \varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon \\ 19 & 16 & 0 & 9 & \varepsilon & 1 \\ 10 & 7 & \varepsilon & 0 & \varepsilon & \varepsilon \\ 12 & 9 & \varepsilon & 2 & 0 & \varepsilon \\ 18 & 15 & \varepsilon & 8 & \varepsilon & 0 \end{bmatrix}, \quad \boldsymbol{A} = \boldsymbol{A}_{0}^{*} \otimes \boldsymbol{A}_{1} = \begin{bmatrix} \varepsilon & \varepsilon & 6 & \varepsilon & \varepsilon & \varepsilon \\ \varepsilon & \varepsilon & 9 & \varepsilon & 5 & \varepsilon \\ \varepsilon & \varepsilon & 16 & \varepsilon & 12 & \varepsilon \\ \varepsilon & \varepsilon & 18 & \varepsilon & 14 & \varepsilon \\ \varepsilon & \varepsilon & 24 & \varepsilon & 20 & \varepsilon \end{bmatrix}.$$

Pentru valori $k \ge 2$, reprezentarea de stare poate fi scrisă în forma: $\mathbf{x}(k) = A \otimes \mathbf{x}(k-1), \ k \ge 2,$

adică

$$\begin{cases} x_1(k) = 6 \otimes x_3(k-1) \\ x_2(k) = 9 \otimes x_3(k-1) \oplus 5 \otimes x_5(k-1) \\ x_3(k) = 25 \otimes x_3(k-1) \oplus 21 \otimes x_5(k-1) \\ x_4(k) = 16 \otimes x_3(k-1) \oplus 12 \otimes x_5(k-1) \\ x_5(k) = 18 \otimes x_3(k-1) \oplus 14 \otimes x_5(k-1) \\ x_6(k) = 24 \otimes x_3(k-1) \oplus 20 \otimes x_5(k-1) \end{cases} \Leftrightarrow \begin{cases} x_1(k) = 6 + x_3(k-1) \\ x_2(k) = \max\{9 + x_3(k-1), 5 + x_5(k-1)\} \\ x_3(k) = \max\{25 + x_3(k-1), 21 + x_5(k-1)\} \\ x_4(k) = \max\{16 + x_3(k-1), 12 + x_5(k-1)\} \\ x_5(k) = \max\{18 + x_3(k-1), 14 + x_5(k-1)\} \\ x_6(k) = \max\{24 + x_3(k-1), 20 + x_5(k-1)\} \end{cases}$$

Prin inducție matematică se demonstrează că $x_3(k) > x_5(k)$, pentru k = 1, 2, ..., astfel încât, în final, rezultă:

$$x_{1}(k) = 6 + x_{3}(k-1),$$

$$x_{2}(k) = 9 + x_{3}(k-1),$$

$$x_{3}(k) = 25 + x_{3}(k-1),$$

$$x_{4}(k) = 16 + x_{3}(k-1),$$

$$x_{5}(k) = 18 + x_{3}(k-1),$$

$$x_{6}(k) = 24 + x_{3}(k-1),$$

$$x_{6}(k) = 24 + x_{3}(k-1),$$

Pentru primele 5 iterații ale algoritmului se obțin următoarele valori numerice: $\begin{bmatrix} 0 \\ -25 \end{bmatrix}$ $\begin{bmatrix} 50 \\ -50 \end{bmatrix}$ $\begin{bmatrix} 75 \\ -75 \end{bmatrix}$ $\begin{bmatrix} 100 \\ -75 \end{bmatrix}$

$$\boldsymbol{x}(1) = \begin{bmatrix} 0 \\ 3 \\ 19 \\ 10 \\ 12 \\ 18 \end{bmatrix}, \quad \boldsymbol{x}(2) = \begin{bmatrix} 25 \\ 28 \\ 44 \\ 35 \\ 37 \\ 43 \end{bmatrix}, \quad \boldsymbol{x}(3) = \begin{bmatrix} 50 \\ 53 \\ 69 \\ 60 \\ 62 \\ 68 \end{bmatrix}, \quad \boldsymbol{x}(4) = \begin{bmatrix} 75 \\ 78 \\ 94 \\ 85 \\ 87 \\ 93 \end{bmatrix}, \quad \boldsymbol{x}(5) = \begin{bmatrix} 100 \\ 103 \\ 119 \\ 110 \\ 112 \\ 118 \end{bmatrix}.$$

Se observă că sistemul are o comportare periodică cu perioada de 25 [unități de timp]. Analitic, periodicitatea comportării sistemului se demonstrează pornind de la relația $x_3(k) = 25 + x_3(k-1)$, $k \ge 2$, de unde rezultă relația vectorială $\mathbf{x}(k) = 25 \otimes \mathbf{0} \oplus \mathbf{x}(k-1)$, cu $\boldsymbol{\theta} = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}^T$ (reamintim că în algebra max-plus, 0 este elementul neutru față de operația multiplicativă \otimes).

O altă posibilitate de determinare a perioadei este prin calcularea valorii proprii a matricei *A* utilizând relația (BT9.4.17), pe care o lăsăm cititorului drept exercițiu.

3. Mediul *Petri Net Toolbox* oferă posibilitatea vizualizării descrierii de stare în algebra maxplus asociată unui graf marcat temporizat *P* (fig. AP9.3.2), precum și a reprezentărilor grafice $x_1(k)$, $x_4(k)$, pentru k = 1, 2, ..., 5 (fig. AP9.3.3).

📣 Max-Plus Equations	
x(k) = A0 * x(k) + A1 * x(k-1)	<u> </u>
A0 =	
-Inf -Inf -Inf -Inf -Inf -Inf 3 -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf 7 -Inf -Inf -Inf -Inf -Inf -Inf -Inf 2 -Inf -Inf 4 -Inf -Inf 8 -Inf -Inf	
A1 =	
-Inf -Inf 6 -Inf	T

Fig. AP9.3.2. Reprezentarea de stare max-plus asociată rețelei din fig. AP9.3.1.

Fig. AP9.3.3. Reprezentările grafice $x_1(k)$, $x_4(k)$, pentru $k = \overline{1,5}$, corespunzătoarei rețelei din fig. AP9.3.1 afișate în fereastra deschisă de **Petri Net Toolbox** pentru analiza max-plus.

AP9.4.

Se consideră o celulă de fabricație flexibilă – adaptare după (Bacelli et al., 1992) – ce constă din trei mașini de prelucrare universale M_1 , M_2 și M_3 . Se fabrică 3 tipuri de produse, P_1 , P_2 și P_3 , care necesită următoarele secvențe de prelucrări (fig. AP9.4.1):

- pentru produsul P₁: prelucrare 1 pe M₂ (durata d₁₂ = 3 min), prelucrare 2 pe M₃ (durata d₁₃ = 4 min);
- pentru produsul P₂: prelucrare 1 pe M₁ (durata d₂₁ = 1 min), prelucrare 2 pe M₂ (durata d₂₂ = 2 min), prelucrare 3 pe M₃ (durata d₂₃ = 3 min);
- pentru produsul P₃: prelucrare 1 pe M₁ (durata $d_{31} = 5$ min), prelucrare 2 pe M₂ (durata $d_{32} = 3$ min).

Duratele pentru transportul pieselor și pentru eliberarea mașinilor sunt considerate neglijabile. Se consideră următoarea strategie de planificare a servirii produselor (clienților) P_1 , P_2 , P_3 de către resursele M_1 , M_2 , M_3 :

(S) M_1 : P_2 , P_3 ; M_2 : P_1 , P_2 , P_3 ; M_3 : P_1 , P_2 .

- 1. Să se construiască modelul tip graf marcat temporizat P al operațiilor din celula de fabricație.
- 2. Să se construiască reprezentarea de stare max-plus asociată.
- 3. Să se expliciteze expresiile variabilelor de stare și de ieșire de așa manieră încât să se evidențieze modul lor de calcul iterativ.
- 4. Considerând că celula de fabricație este alimentată cu piese de tipul P₁ la momentele 0, 3, 10, 15, 16, 25 [min], de tipul P2 la momentele 0, 4, 4, 10, 20, 21 [min] şi de tipul P₃ la momentele 4, 9, 13, 15, 22, 29 [min], să se determine momentele de timp la care sunt finalizate piesele de tipul P₁, P₂ şi, respectiv, P₃.
- Utilizând mediul *Petri Net Toolbox*, să se reprezinte grafic momentele de timp la care cele 6 piese de tipul P₁ sunt introduse în sistem, încep prelucrarea pe maşina M₂, încep prelucrarea pe maşina M₃ şi sunt degajate din celula de fabricație ca produse finite.

Fig. AP9.4.1. Succesiunea de prelucrări în celula de fabricație din AP9.4.

<u>Soluție</u>

1. În fig. AP9.4.2 este prezentat modelul de tip graf marcat cu temporizare P al celulei de fabricație. Pozițiilor le sunt asignate durate de timp în concordanță cu semnificațiile lor fizice având valorile precizate în figură. Marcajul inițial al rețelei plasează jetoane numai pe pozițiile ce modelează disponibilitatea mașinilor și satisface condițiile impuse prin strategia

196 -

(S) de planificare a servirii produselor. Pentru desemnarea tranzițiilor se utilizează direct numele variabilelor de intrare u_{i_s} , $i_s = 1, 2, 3$, de stare x_i , i = 1, ..., 7, și de ieșire y_{i_r} , $i_r = 1, 2, 3$.

Fig. AP9.4.2. Modelul de tip graf marcat cu temporizare P utilizat în AP9.4.

2. Graful marcat din fig. AP9.4.2 are 3 tranziții sursă (u1, u2 și u3), 3 tranziții receptor (y1, y2 și y3), precum și 7 tranziții conectate atât prin arce de intrare cât și prin arce de ieșire (x1, ..., x7). Considerăm vectorii $\boldsymbol{u}(k) = \begin{bmatrix} u_1(k) & u_2(k) & u_3(k) \end{bmatrix}^T$, $\boldsymbol{y}(k) = \begin{bmatrix} y_1(k) & y_2(k) & y_3(k) \end{bmatrix}^T$ și $\boldsymbol{x}(k) = \begin{bmatrix} x_1(k) & \dots & x_7(k) \end{bmatrix}^T$ cu semnificațiile din paragraful BT9.3.

Reprezentarea de stare max-plus a acestui graf marcat este

$$\boldsymbol{x}(k) = \boldsymbol{A}_0 \otimes \boldsymbol{x}(k) \oplus \boldsymbol{A}_1 \otimes \boldsymbol{x}(k-1) \oplus \boldsymbol{B}_0 \otimes \boldsymbol{u}(k),$$

$$\mathbf{y}(k) = \mathbf{C}_0 \otimes \mathbf{x}(k)$$

pentru care matricele implicate au următoarele valori:

197

Este evident faptul că momentele de timp la care se execută tranzițiile sursă, cu ajutorul cărora se construiesc vectorii u(k), k = 1, 2, ..., sunt considerate cunoscute.

3. Rezolvarea ecuației de stare urmărește algoritmul prezentat în paragraful BT9.4. Deoarece nici una dintre tranzițiile rețelei nu este validată la momentul inițial $\tau_0 = 0$, vectorul de stare este dat de $\mathbf{x}(k) = A_0^* \otimes \mathbf{v}(k)$, unde

	0	Е	Е	Е	Е	Е	ε
	3	0	Е	Е	Е	Е	Е
	Е	Е	0	Е	Е	Е	Е
$A_0^* =$	3	Е	1	0	Е	Е	Е
	7	4	3	2	0	Е	Е
	Е	Е	1	Е	Е	0	Е
	5	Е	6	2	Е	5	0

si $\mathbf{v}(k) = \mathbf{A}_1 \otimes \mathbf{x}(k-1) \oplus \mathbf{B}_0 \otimes \mathbf{u}(k)$.

Pentru k = 1, ținem cont de faptul că $x_1(0) = ... = x_7(0) = \varepsilon$ și, efectuând calculele, se obține $v(1) = B_0 \otimes u(1) = [u_1(1) \quad \varepsilon \quad u_2(1) \quad \varepsilon \quad \varepsilon \quad u_3(1) \quad \varepsilon]^T$. Vectorul $x(1) = A_0^* \otimes v(1)$ rezultă de forma:

$$\mathbf{x}(1) = \begin{bmatrix} u_1(1) \\ 3 \otimes u_1(1) \\ u_2(1) \\ 3 \otimes u_1(1) \oplus 1 \otimes u_2(1) \\ 7 \otimes u_1(1) \oplus 3 \otimes u_2(1) \\ 1 \otimes u_2(1) \oplus 0 \otimes u_3(1) \\ 5 \otimes u_1(1) \oplus 6 \otimes u_2(1) \oplus 5 \otimes u_3(1) \end{bmatrix} \Leftrightarrow \begin{cases} x_1(1) = u_1(1) \\ x_2(1) = 3 + u_1(1) \\ x_3(1) = u_2(1) \\ x_4(1) = \max\{3 + u_1(1), 1 + u_2(1)\} \\ x_5(1) = \max\{3 + u_1(1), 3 + u_2(1)\} \\ x_5(1) = \max\{7 + u_1(1), 3 + u_2(1)\} \\ x_6(1) = \max\{1 + u_2(1), u_3(1)\} \\ x_7(1) = \max\{5 + u_1(1), 6 + u_2(1), 5 + u_3(1)\} \end{cases}$$

Pentru $k \ge 2$, considerând matricele

$$A = A_0^* \otimes A_1 = \begin{bmatrix} \varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon & 3 \\ \varepsilon & \varepsilon & \varepsilon & \varepsilon & 3 & \varepsilon & 6 \\ \varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon & 5 & \varepsilon \\ \varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon & 6 & 6 \\ \varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon & 7 & 8 & 10 \\ \varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon & 6 & \varepsilon \\ \varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon & 6 & \varepsilon \\ \varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon & 6 & \varepsilon \\ \varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon & 11 & 8 \end{bmatrix}, \quad B = A_0^* \otimes B_0 = \begin{bmatrix} 0 & \varepsilon & \varepsilon \\ 3 & \varepsilon & \varepsilon \\ 0 & \varepsilon \\ 0 & \varepsilon \\ \varepsilon & 1 & 0 \\ 5 & 6 & 5 \end{bmatrix},$$

ecuația de stare ia forma $\mathbf{x}(k) = A \otimes \mathbf{x}(k-1) \oplus \mathbf{B} \otimes \mathbf{u}(k)$, care poate fi direct utilizată pentru calcularea valorilor vectorilor $\mathbf{x}(k)$, $k \ge 2$, anume

$$\mathbf{x}(k) = \begin{bmatrix} 3 \otimes x_7(k-1) \oplus u_1(k) \\ 3 \otimes x_5(k-1) \oplus 6 \otimes x_7(k-1) \oplus 3 \otimes u_1(k) \\ 5 \otimes x_6(k-1) \oplus u_2(k) \\ 6 \otimes x_6(k-1) \oplus 6 \otimes x_7(k-1) \oplus 3 \otimes u_1(k) \oplus 1 \otimes u_2(k) \\ 7 \otimes x_5(k-1) \oplus 8 \otimes x_6(k-1) \oplus 10 \otimes x_7(k-1) \oplus 7 \otimes u_1(k) \oplus 3 \otimes u_2(k) \\ 6 \otimes x_6(k-1) \oplus 1 \otimes u_2(k) \oplus u_3(k) \\ 11 \otimes x_6(k-1) \oplus 8 \otimes x_7(k-1) \oplus 5 \otimes u_1(k) \oplus 6 \otimes u_2(k) \oplus 5 \otimes u_3(k) \end{bmatrix} \Leftrightarrow \begin{bmatrix} x_1(k) = \max\{3 + x_7(k-1), u_1(k)\} \\ x_2(k) = \max\{3 + x_5(k-1), 6 + x_7(k-1), 3 + u_1(k)\} \\ x_3(k) = \max\{5 + x_6(k-1), 0 + x_7(k-1), 3 + u_1(k), 1 + u_2(k)\} \\ x_5(k) = \max\{7 + x_5(k-1), 8 + x_6(k-1), 10 + x_7(k-1), 7 + u_1(k), 3 + u_2(k)\} \\ x_6(k) = \max\{6 + x_6(k-1), 1 + u_2(k), u_3(k)\} \\ x_7(k) = \max\{11 + x_6(k-1), 8 + x_7(k-1), 5 + u_1(k), 6 + u_2(k), 5 + u_3(k)\} \end{bmatrix}$$

Cunoscând $\mathbf{x}(k), k \ge 1$, ecuația de ieșire furnizează $\mathbf{y}(k) = \mathbf{C}_0 \otimes \mathbf{x}(k)$, adică

$$\mathbf{y}(k) = \begin{bmatrix} 4 \otimes x_2(k) \\ 3 \otimes x_5(k) \\ 3 \otimes x_7(k) \end{bmatrix} \iff \begin{cases} y_1(k) = 4 + x_2(k) \\ y_2(k) = 3 + x_5(k), \quad k \ge 1. \\ y_3(k) = 3 + x_7(k) \end{cases}$$

4. Pe baza valorilor numerice precizate în enunț se construiesc vectorii de intrare ai modelului

$$\boldsymbol{u}(1) = \begin{bmatrix} 0\\0\\4 \end{bmatrix}, \quad \boldsymbol{u}(2) = \begin{bmatrix} 3\\4\\9 \end{bmatrix}, \quad \boldsymbol{u}(3) = \begin{bmatrix} 10\\4\\13 \end{bmatrix}, \quad \boldsymbol{u}(4) = \begin{bmatrix} 15\\10\\15 \end{bmatrix}, \quad \boldsymbol{u}(5) = \begin{bmatrix} 16\\20\\22 \end{bmatrix}, \quad \boldsymbol{u}(6) = \begin{bmatrix} 25\\21\\29 \end{bmatrix}.$$

Utilizând formulele generale determinate la punctul 3 pentru vectorii x(k) și y(k), $k = \overline{1,6}$, rezultă

$$\mathbf{x}(1) = \begin{bmatrix} 0\\3\\0\\3\\7\\4\\9 \end{bmatrix}, \quad \mathbf{x}(2) = \begin{bmatrix} 12\\15\\9\\15\\19\\10\\17 \end{bmatrix}, \quad \mathbf{x}(3) = \begin{bmatrix} 20\\23\\15\\23\\15\\23\\27\\16\\25 \end{bmatrix}, \quad \mathbf{x}(4) = \begin{bmatrix} 28\\31\\21\\31\\31\\35\\22\\33 \end{bmatrix}, \quad \mathbf{x}(5) = \begin{bmatrix} 36\\39\\27\\39\\43\\28\\41 \end{bmatrix}, \quad \mathbf{x}(6) = \begin{bmatrix} 44\\47\\33\\47\\51\\34\\49 \end{bmatrix},$$

respectiv,

200 -

$$\mathbf{y}(1) = \begin{bmatrix} 7\\10\\12 \end{bmatrix}, \quad \mathbf{y}(2) = \begin{bmatrix} 19\\22\\20 \end{bmatrix}, \quad \mathbf{y}(3) = \begin{bmatrix} 27\\30\\28 \end{bmatrix}, \quad \mathbf{y}(4) = \begin{bmatrix} 35\\38\\36 \end{bmatrix}, \quad \mathbf{y}(1) = \begin{bmatrix} 43\\46\\44 \end{bmatrix}, \quad \mathbf{y}(6) = \begin{bmatrix} 51\\54\\52 \end{bmatrix}$$

5. Mediul *Petri Net Toolbox* furnizează atât descrierea de stare max-plus asociată rețelei din fig. AP9.4.2, cât și reprezentarea grafică (fig. AP9.4.3) a componentelor vectorilor de intrare, stare și ieșire menționate în enunț.

Fig. AP9.4.3. Reprezentările grafice $u_1(k)$, $x_1(k)$, $x_2(k)$, $y_1(k)$, pentru $k = \overline{1,6}$, corespunzătoarei rețelei din fig. AP9.4.2, afișate în fereastra deschisă de **Petri Net Toolbox** pentru analiza max-plus.
Capitolul 10

Petri Net Toolbox – descriere și utilizare / Learning about Petri Net Toolbox

Prezentarea din acest capitol a software-ului *Petri Net Toolbox* este realizată în spiritul structurării din Help-ul online (<u>http://www.ac.tuiasi.ro/pntool</u>) pus la dispoziție de acest produs. Produsul în totalitatea lui utilizează limba engleză (pentru meniuri, cutii de dialog, documentație, etc.) cu scopul de a asigura facila lui diseminare în mediile universitare. Întrucât potențialii utilizatori aparțin unei sfere tehnico-științifice bine delimitate, dezvoltată în decursul timpului pe terminologie și concepte de origine anglo-saxonă, informațiile furnizate în cele ce urmează sunt formulate în limba engleză, considerând redundantă elaborarea unei versiuni în limba română.

Introduction – Petri Net Toolbox at a First Glance

<u>Preface.</u> The *Petri Net Toolbox* (*PN Toolbox*) is a software tool for simulation, analysis and design of discrete event systems, based on *Petri net* (PN) models. This software is embedded in the MATLAB environment and its usage requires the following products:

- MATLAB version 6.0 or higher;
- Statistics Toolbox for random number generation and statistical functions;
- **Optimization Toolbox** for semi-infinite minimization problems.

The integration with the MATLAB philosophy presents the considerable advantage of creating powerful algebraic, statistical and graphical instruments, which exploit the high quality routines available in MATLAB. Moreover, this MATLAB orientation of the *PN Toolbox* was intended to permit further development, including tools devoted to hybrid systems, because MATLAB incorporates comprehensive software for studying continuous and discontinuous dynamics.

Unlike other PN software, where places are meant as having finite capacity (because of the arithmetic representation used by the computational environment), our toolbox is able to operate with infinite-capacity places, since MATLAB includes the built-in function **Inf**, which returns the IEEE arithmetic representation for positive infinity.

The *PN Toolbox* was designed and implemented at the **Department of Automatic Control and Industrial Informatics** of the **Technical University** "**Gh. Asachi" of Iaşi**.

Expected Background. To derive a full benefit from reading this guide, you should be familiar with:

- the formal and graphical exploitation of PNs as a highly effective tool for modeling discrete event dynamical systems;
- the concepts and use of MATLAB programming language.

Types of Petri Nets. In the current version of the *PN Toolbox*, five types of classic PN models are accepted, namely: untimed, transition timed, place-timed, stochastic and generalized stochastic. The timed nets can be deterministic or stochastic, and the stochastic case allows using the appropriate distribution function available in the MATLAB's Statistics Toolbox.

<u>Main Features.</u> The *PN Toolbox* has an easy to exploit *Graphical User Interface* (GUI), whose purpose is twofold. First, it gives the user the possibility to draw PNs in a natural fashion, to store, retrieve and resize (by Zoom-In and Zoom-Out features) such drawings. Second, it permits the simulation, analysis and design of the PNs, by exploiting all the computational resources of the environment, via the global variables stored in the MATLAB's Workspace. All the net nodes and arcs are handled as MATLAB objects so as changes in their parameters can be approached through the standard functions set and get.

When starting to build a new PN model, the user must define its type by appropriate checking in a dialogue box. The properties of the net-objects (places, transitions, arcs) depend on the selected type of model.

After drawing a PN model, the user can:

- visualize the *Incidence Matrix*, which is automatically built from the net topology;
- explore the *Behavioral Properties* (such as liveness, boundedness, reversibility etc.) by consulting the *Coverability Tree*, which is automatically built from the net topology and initial marking;
- explore the *Structural Properties* (such as structural boundedness, repetitiveness, conservativeness and consistency):
- calculate *P-Invariants* and *T-Invariants*;
- run a *Simulation* experiment;
- display current results of the simulation using the *Scope* and *Diary* facilities;
- evaluate the global *Performance Indices* (such as average marking of places, average firing delay of transitions, etc.);
- perform a *Max-Plus Analysis* (restricted to event-graphs);
- *Design* a configuration with suitable dynamics (via automated iterative simulations).

The *PN Toolbox* uses the *XML* format for saving a model. A short description of the file format and the specific commands is given in Appendix 1 of this documentation.

To ensure flexibility, the set of all default values manipulated by the *PN Toolbox* are accessible to the user by means of a configuration file presented in Appendix 2.

Fig. I.1. *The main* **PN Toolbox** window (a) *Draw Mode*, (b) *Explore Mode*.

Part I. Describing the Graphical User Interface (GUI)

I.1. Overview

The *PN Toolbox* is equipped with an easy to exploit GUI (fig. I.1), which allows drawing PNs and permits simulation, analysis and synthesis. This GUI becomes operational once the command

>> pntool

is typed at the MATLAB's prompt.

There are two modes in which the *PN Toolbox* may be exploited, namely the *Draw Mode* that allows the user to build a new PN model or modify the properties of an existing one, and the *Explore Mode* that enables the user's access to simulation, analysis and design tools.

The GUI exhibits eight control panels (see fig. I.1): *Menu Bar* (1), *Quick Access Toolbar* (2), *Drawing Area* (3), *Drawing Panel* (4), *Draw/Explore Switch* (5), *Simulation Panel* (6), *Status Panel* (7) and a *Message Box* (8). Further on, all these panels are described.

I.2. Menu Bar

The *Menu Bar* (placed horizontally, on top of the main window of the *PN Toolbox*) displays a set of nine drop-down menus, from which the user can access all the facilities available in the *PN Toolbox*. These menus are enabled in accordance with the exploitation mode of the *PN Toolbox*, namely the *Draw Mode* or the *Explore Mode*.

The menus available under the *Menu Bar* are: *File*, *Modeling*, *View*, *Properties*, *Simulation*, *Performance*, *Max-Plus*, *Design* and *Help*.

I.2.1. File menu

The *File* menu (fig. I.2) offers facilities for file-handling operations. This is the only menu available when the *PN Toolbox* GUI is started. This menu contains the commands:

- <u>New Model</u>: opens a new board in the *Drawing Area* for the user to build a new PN model. This command first opens a dialogue box for selecting the type of the new model;
- <u>Open Model</u>: loads a previously saved model;
- <u>Close Model</u>: clears the *Drawing Area* asking for saving the current model if changes appeared in it;
- <u>Save Model</u>: saves the PN model drawn in the *Drawing Area*;
- Save Model <u>As</u> ...: saves the current model with a name given by the user;
- *Exit PNToolbox*: closes the current working session and clears all the global variables corresponding to the *PN Toolbox*.

Fig. I.2. The **File** menu.

Fig. I.3. The Modeling menu.

205

I.2.2. Modeling menu

The *Modeling* menu (fig. I.3) provides tools for graphical editing (graph nodes, arcs, tokens, labels) a model in the *Drawing Area*. The commands available in this menu are:

- *Add <u>Place</u>*: adds a new place to the current PN model;
- *Add <u>T</u>ransition*: adds a new transition to the current PN model;
- Add <u>Arc</u>: allows drawing an arc between two different nodes of the current PN model;
- Add Token: adds a token in a specific place;
- <u>Edit Objects</u>: opens the dialogue box associated with the net object that is selected in the *Drawing Area* by a click on the left button of the mouse. It allows the user to edit the properties of the selected object; these properties are in full accordance with the type of the PN model, so that part of them might be already disabled by the initial choice of the net type.
- <u>*Resolution for Conflicting Transitions*</u>: allows assigning priorities or probabilities to conflicting transitions.

I.2.3. View menu

The *View* menu (fig. I.4) allows choosing specific conditions for visualization of the current model. The commands available in this menu are:

- *Zoom In*: lets the user get a closer view to a smaller portion of the *Drawing Area*;
- *Zoom Out*: lets the user visualize a larger portion of the *Drawing Area*;
- <u>Show Grid</u>: allows the user to add/remove grid lines to/from the *Drawing Area*;
- <u>Arc Weights:</u> permits displaying or hiding the current values of arc weights.

Fig. I.4. The View menu.

Fig. I.5. The Properties menu.

I.2.4. Properties menu

The *Properties* menu (fig. I.5) provides computational tools for the analysis of the behavioral and structural properties of the current PN model. The following commands are available in this menu:

- **Incidence Matrix:** displays the incidence matrix of the current model in a separate window;
- <u>**Behavioral Coverability tree:**</u> constructs the coverability tree of the current model, which can be visualized in two different formats: graphic and text;
- <u>Structural</u>: performs the analysis of the structural properties of the current model (structural boundedness, conservativeness, repetitiveness and consistency);
- *Invariants*: provides minimal-support P- and T-invariants;

I.2.5. Simulation menu

Using the *Simulation* menu (fig. I.6), the user can control the simulation progress and record the results (details in section II.3). The following commands are available in this menu:

- *Step*: simulates the PN model step by step, accompanied by animation;
- *Run <u>Slow</u>*: simulates the PN model with a low speed, which is specified by the user (see the *Preferences* command), accompanied by animation. The simulation ends when the user clicks the right button of the mouse;
- *Run <u>Fast</u>*: simulates the PN model with the maximum speed allowed by the environment. No animation is provided in this case. The simulation ends when the condition set by the user in *Breakpoint* is met;
- *Breakpoint*: allows choosing the stop condition for simulation in the *Run Fast* mode;
- <u>**Reset:**</u> brings the PN model to the initial state and resets all the results that were recorded in a previous simulation experiment;

Fig. I.6. The Simulation menu.

Fig. I.7. The **Preferences** dialogue box.

- <u>Log File</u>: writes the simulation history (recording all the states that the PN model passed through) in a file designated by the user. This command is operative only in the *Step* and *Run Slow* modes;
- *<u>View History</u>*: opens the simulation log file;
- <u>Preferences</u>: opens a dialogue box (fig. I.7) allowing the user to set the conditions of the simulation (*Animation Delay* is valid only for the *Run Slow* simulation mode, *Token-In-Place Color* is meaningful only for P-timed PNs, the value of the *Seed* is used to initialize the random number generator of MATLAB).

I.2.6. Performance menu

At the end of a simulation experiment, the *Performance* menu (fig. I.8) allows the visualization of the *global performance indices* that are stored in an HTML format. These indices are separately recorded for transitions and for places. The commands available for this menu are:

- <u>Place Indices</u>: displays the performance indices corresponding to the places;
- <u>*Transition Indices*</u>: displays the performance indices corresponding to the transitions.

Fig. I.8. The Performance menu.

I.2.7. Max-Plus menu

The *Max-Plus* menu allows performing the simulation and analysis of an event graph (marked graph) based on its max-plus state-space model. A new MATLAB figure is opened and all the facilities available for max-plus analysis and simulation are accessible (see section **Max-Plus Models**).

I.2.8. Design menu

The *Design* menu is used for the synthesis of timed PN models; this allows simulations for several types of parameterizations considered in the PN architecture (see section II.6).

I.2.9. Help menu

The *Help* menu (fig. I.9) provides information about the exploitation of the *PN Toolbox*. The commands available in this menu are as follows:

- > <u>Contents and Index</u>: opens this documentation;
- <u>Demos</u>: allows visualization of four Flash movies initiating the user in the exploitation of the PN Toolbox;
- > <u>About Petri Net Toolbox</u>: contains information about the authors of the PN Toolbox.

I.3. Quick Access Toolbar

The *Quick Access Toolbar* (fig. I.10) is placed as a horizontal bar just below the *Menu Bar* and presents six image buttons. The actions of the first three buttons are identical to those controllable by the *New* (1), *Open* (2) and *Save* (3) commands from the *File* menu. The actions of the next three buttons are identical to those controllable by the *Zoom In* (4), *Zoom Out* (5) and *Show Grid* (6) commands from the *View* menu.

Fig. I.10. The Quick Access Toolbar.

I.4. Drawing Area

The *Drawing Area* (located in the central and right side of the main window – see fig. I.1) is provided with a grid, where the nodes of the PN graph are to be placed, and with two scrollbars (on the right and bottom sides) for moving the desired parts of the graph into view.

The **Drawing Area** is an axes MATLAB object and it is organized as a matrix with 50 rows and 50 columns. The bottom left-hand corner corresponds to the (0,0) cell, whereas the upper right-hand corner to the (49,49) cell. In one cell the user can draw a single node (place or transition), so that the total number of places and transitions in a model cannot exceed 2500.

Using the *Zoom In / Zoom Out* commands from the *View* menu, the number of the cells is decreased/increased with 10 cells on each axis. The *Show Grid* command adds/removes the grid lines to/from the Drawing Area.

I.5. Drawing Panel

The *Drawing Panel* (fig. I.11) is placed vertically, in the left side of the main window, below the *Quick Access Toolbar*, and presents five image buttons with actions identical to the commands *Edit Objects* (1), *Add Place* (2), *Add Transition* (3), *Add Arc* (4) and *Add Token* (5) available in the *Modeling* menu.

I.6. Draw/Explore Switch

The *Draw / Explore Switch* (identified as (5) in fig. I.1) allows switching between the *Draw Mode* (in which the user can draw a new model or modify an existing one – button unpressed) and the *Explore Mode* (in which the user can access all functions available for simulation and analysis – button pressed).

When switching from the *Explore Mode* to the *Draw Mode*, the marking of the PN model is automatically reset to the initial token configuration and the former values of all the performance indices are lost.

Fig. I.11. The Drawing Panel.

Fig. I.12. The Simulation Panel.

I.7. Simulation Panel

The *Simulation Panel* (fig. I.12) is placed vertically, in the left side of the main window, just below the *Drawing Panel*. It presents four image buttons with actions identical to the commands *Reset* (1), *Step* (2), *Run Slow* (3) and *Run Fast* (4) available in the *Simulation* menu. It also provides two visualization instruments for observing the progress of the simulation: *Diary* (5) and *Scope* (6) (see section Running a Simulation).

I.8. Status Panel

The *Status Panel* (identified as (7) in fig. I.1) is a message board (placed in the bottom lefthand corner of the main window), where the *PN Toolbox* displays the current simulation time and the total number of events. In addition, the *Status Panel* displays the file name corresponding to the current model.

I.9. Message Box

The *Message Box* (identified as (8) in fig. I.1) is a MATLAB text object used by the *PN Toolbox* to display messages to the user. In the *Draw Mode*, five types of messages may be displayed, corresponding to the actions enabled by the five buttons in the *Drawing Panel*, respectively. In the *Explore Mode*, messages are displayed only during the simulation of a model (*Step* or *Run Slow* commands) if option *Displayed* is checked for *Transition-Firing Message* in the *Preferences* dialogue box (from the *Simulation* menu). When a transition fires, the *Message Box* displays a text associated with this transition; the text must be previously defined in the *Edit Transition* dialogue box (*Draw Mode* - see section II.1.3).

Part II. Exploiting the Toolbox

II.1. Building a Model

II.1.1. Overview

The *PN Toolbox* provides a set of commands for building a PN model, which are accessible from the *Modeling* menu or from the corresponding buttons in the *Drawing Panel*. The model may be easily drawn, in a natural fashion, in the *Drawing Area*. The user can also have a read / write access to the properties of the net nodes and arcs by opening the dialog box associated with the object selected in the *Drawing Area*. In addition, the *PN Toolbox* allows the assignment of priorities and / or probabilities to conflicting transitions.

The **Drawing Area** displays a grid with dotted gray lines. The user may hide or show these lines by using the command **View / Show Grid** or by pressing the corresponding button from the **Quick Access Toolbar**. The nodes of the PN may be placed only in the grid cells; each cell can contain a single net node. This way, each node is uniquely characterized by its coordinates in the **Drawing Area**.

A PN model created in the *PN Toolbox* is saved as an *XML* file. Besides the automatic generation of the XML file of a model, any text editor can be used to produce such a file if the user complies with the syntax given in Appendix 1.

The first step in the creation of a new model is to define its type. By selecting the type of the PN, some of the work variables are automatically changed. This is because the simulation and analysis procedures differ from one type to another. The drawing board of a new model may be opened in the *Drawing Area* by selecting the *File / New Model* command or by pressing the *New* button from *Quick Access Toolbar*. This command opens a dialog box (fig. II.1) which permits the selection of the type of model to be built. The default type is *Untimed PN*.

Fig. II.1. The dialogue box for selecting the type of a PN model.

A previously created model may be loaded from the disk by means of the command *Open* available under the *File* menu or by pressing the *Open* button from the *Quick Access Toolbar*. Changes in an existing model can be done directly in the GUI while in *Draw Mode*, or by editing the corresponding XML file.

If a model is already loaded in the window, the *Drawing Area* is cleared by selecting the command *File / Close Model*.

II.1.2. Places

A place is graphically represented in the *Drawing Area* by a circle. To draw a place in the *Drawing Area*, the user must press the *Add Place* button from the *Drawing Panel* or select the *Add Place* command from the *Modeling* menu. Then, the user must click only once into the desired grid cell of the *Drawing Area*. A second click in the same grid cell has no effect. Once the circle corresponding to a place is drawn, a label is automatically attached to it. The default position of the label is below the circle.

After drawing a place, there are two ways to change its position in the *Drawing Area* while in *Draw Mode* and no button from the *Drawing Panel* is pressed. The first way is to left-click the desired place and then drag it in the new position. The second way is to right-click the place; as a result, a MATLAB uicontext menu (fig. II.2) appears and the command *Move Place* becomes available. In both cases, the label is moved together with the place.

Fig. II.2. The uicontext menu of a place.

For a selected place, the uicontext menu also allows: (*i*) controlling the label's visibility on the screen (*View Label* command), (*ii*) changing the position of the label (*Move Label* command), (*iii*) deleting the place (*Delete* command) and (*iv*) opening the *Edit Place* dialogue box (fig. II.3) that lets the user modify the properties of the place as a MATLAB object (*Properties* command).

The *Edit Place* dialogue box may be also opened by one of the procedures (EP1) or (EP2) described below, followed by a click on the desired place. (EP1) consists in selecting the *Edit Objects* command from the *Modeling* menu; (EP2) consists in pressing the *Edit Objects* button from the *Drawing Panel*.

Each place is uniquely identified with an id that is automatically assigned by the *PN Toolbox* and cannot be changed by the user. This id appears in the title bar of the *Edit Place* dialogue box.

The option *Name* displays the string that is used as the label of the place. By default, this string coincides with the id of the place. The user can modify this string (without affecting the id) if necessary.

The option *Color* displays the color used for drawing the place. By default, this color is black, but the user can select another one from a list of eight predefined colors. Using different colors for drawing the places of a net might be helpful for complex topologies (e.g. for highlighting different phases requested by a multi-step design procedure).

The option *Capacity* displays the capacity of the place. By default, the capacity is **Inf** (the IEEE arithmetic representation for positive infinity). The user can set this field to a positive integer value.

The option *Tokens* displays the number of tokens in the place. By default, this number is 0. The user can set this field to a positive integer value. If the marking of a place is greater than 0, this marking is shown as a number inside the circle corresponding to that position. Void marking is not explicitly shown.

There are two more possibilities to add a token to a place

 $\left(AT1\right)$ or $\left(AT2\right)$ described below, followed by a click on

the desired place. (AT1) consists in selecting the *Add Token* command from the *Modeling* menu; (AT2) consists in pressing the *Add Token* button from the *Drawing Panel*.

In case of place-timed PN models (see section II.3.4), the *Distribution* option associated with a place allows the user to specify the probability distribution and the necessary parameter(s) which define the corresponding time-duration. This option is not available for untimed or transition-timed models.

The *Delete object* button placed at the bottom of the *Edit Place* dialogue box lets the user delete the place from the model.

II.1.3. Transitions

A transition is graphically represented in the *Drawing Area* by a square. To draw a transition in the *Drawing Area*, the user must press the *Add Transition* button from the *Drawing Panel*

or select the *Add Transition* command from the *Modeling* menu. Then, the user must click only once into the desired grid cell of the *Drawing Area*. A second click in the same grid cell has no effect.

Once the square corresponding to a transition is drawn, a label is automatically attached to it. The default position of the label is below the square.

The same as for a place, after drawing a transition, there are two ways to change its

Fig. II.4. *The uicontext menu of a transition*.

4 Edit Place	: id p1 📃 其	
Label:	p1	
Color:	black 💌	
Capacity:	Inf	
Tokens:	0	
Distrib.:	constant 💌	
Parameters:	k (0.00)	
Modify parameters		
Petri Net Toolbox		
Delete object		
Ok		

Fig. II.3. *The Edit Place dialogue box for modifying the properties of a place.*

position in the *Drawing Area* while in *Draw Mode* and no button from the *Drawing Panel* is pressed. The first way is to left-click the desired transition and then drag it in the new position. The second way is to right-click the transition; as a result, a MATLAB uicontext menu (fig. II.4) appears and the command *Move Transition* becomes available. In both cases, the label is moved together with the transition.

For a selected transition, the uicontext menu also allows: (*i*) controlling the label's visibility on the screen (*View Label* command), (*ii*) changing the position of the label (*Move Label* command), (*iii*) deleting the transition (*Delete* command) and (*iv*) opening the *Edit Transition* dialogue box (fig. II.5) that lets the user modify the properties of the transition as a MATLAB object (*Properties* command).

The *Edit Transition* dialogue box can be also opened by one of the procedures (ET1) or (ET2) described below, followed by a click on the desired transition. (ET1) consists in selecting the *Edit Objects* command from the *Modeling* menu; (ET2) consists in pressing the *Edit Objects* button from the *Drawing Panel*.

Each transition is uniquely identified with an id that is automatically assigned by the *PN Toolbox* and cannot be changed by the user. This id appears in the title bar of the *Edit Transition* dialogue box.

The option *Name* displays the string that is used as the label of the transition. By default, this string coincides with the id of the transition. The user can modify this string (without affecting the id) if necessary.

The *Message* text-box contains the string that is displayed in the *Message Box* during the simulation of the model when firing that transition if option *Displayed* is checked for *Transition-Firing Message* in the *Preferences* dialogue box. By default, this string is *"Firing transition x"* where x is the id of that transition. The user can modify this string if necessary.

Fig. II.5. *The Edit Transition dialogue box for modifying the properties of a transition*

The option *Color* displays the color used for drawing the transition. By default, this color is black, but the user can select another one from a list of eight predefined colors. Using different colors for the transitions of a net might be helpful for complex topologies (e.g. for highlighting different phases requested by a multi-step design procedure).

In case of transition-timed PN models (see section II.3.3), the **Distribution** option associated with a transition allows the user to specify the probability distribution and the necessary parameter(s) which define the corresponding time-duration. This option is not available for untimed or place-timed models.

For Stochastic PN models, only exponentially distributed firing rates can be assigned to the transitions in the net. In the case of Generalized Stochastic PN models, only constant and exponentially distributed firing rates can be assigned to the transitions in the net;

obviously, an instantaneously fireable transition can be modeled by setting the constant distribution to 0. For these two types of models, the user has the possibility to enable or disable the dependence between the firing rate of a transition and the marking of its input places by checking the *Marking dependent* option.

The *Delete object* button placed at the bottom of the *Edit Place* dialogue box lets the user delete the transition from the model.

II.1.4. Arcs

To draw an arc in the *Drawing Area*, the user must press the *Add Arc* button from the *Drawing Panel* or select the *Add Arc* command from the *Modeling* menu. Then, the user must click on the start node and then on the end node. The implementation in the *PN Toolbox* of PN models complies with the basic rule: *an arc of a PN can only connect a place to a transition* (pre-arc) *or a transition to a place* (post-arc), *but never two nodes of the same kind*. The role of splitting arcs in two categories (pre- and post-arcs) will become apparent below, when talking about inhibitor arcs.

Fig. II.6. The uicontext menu of an arc.

By default, an arc is represented as a straight arrow between the two selected nodes of the net. While in *Draw Mode* and no button from the *Drawing Panel* is pressed, a right-click on an arc of the net opens a MATLAB uicontext menu (fig. II.6) that allows: (*i*) modifying

the graphical representation in the *Drawing Area* (*Line* command for a straight line or *Cubic Spline* command for a curve), (*ii*) deleting the arc (*Delete* command) and (*iii*) opening the *Edit Arc* dialogue box (fig. II.7) that lets the user modify the properties of the arc as a MATLAB object (*Properties* command).

The *Edit Arc* dialogue box can be also opened by one of the procedures (EA1) or (EA2) described below, followed by a click on the desired arc. (EA1) consists in selecting the *Edit Objects* command from the *Modeling* menu; (EA2) consists in pressing the *Edit Objects* button from the *Drawing Panel*.

Each arc is uniquely identified with an id that is automatically assigned by the *PN Toolbox* and cannot be changed by the user. This id appears in the title bar of the *Edit Arc* dialogue box.

The option *Color* displays the color used for drawing the arc. By default, this color is black, but the user can select another one from a list of eight predefined

📣 Edit Arc:	id a1 📃 🛛 🗙
Color: Type:	black 💌 regular 💌
Weight:	1
Petri Net Toolbox	
D	elete object
	Ok

Fig. II.7. *The Edit Arc dialogue box for modifying the properties of an arc.*

colors. Using different colors for the arcs of a net might be helpful for complex topologies (e.g. for highlighting different phases requested by a multi-step design procedure).

The option *Type* displays the type of an arc. By default, the type of an arc of a PN model is regular, but the user can change it into bidirectional or inhibitor, if necessary. A *regular* arc represents the standard connection between two nodes of different types. A *bidirectional* arc is equivalent to a pair of arcs with the same weight, one connecting a place to a transition and the other one connecting the same transition to the same place. The graphical representation of a bidirectional arc is a line with arrows at both ends.

An *inhibitor* arc can connect only a place to a transition. The transition is enabled only if the number of tokens in the input place is strictly smaller than the weight of the inhibitor arc. The graphical representation of an inhibitor arc is a line between the two nodes ending with a small circle (near the inhibited transition).

The option *Weight* displays the weight (multiplicity) of the arc. By default, the weight

of an arc is equal to 1, but the user can set this field to a positive integer value.

By default, the weights of the arcs in a net are not shown in the *Drawing Area*. At any stage of PN drawing, the user can visualize the current values of the weights for all the arcs in the net by selecting the *Arc Weights* command from the *View* menu. This command opens the dialogue box presented in fig. II.8 and the user must click the *Yes* button.

Fig. II.8. The View Arc Weights dialogue box.

II.1.5. Setting Priorities and / or Probabilities for Conflicting Transitions

By default, the *PN Toolbox* sets equal probabilities and / or priorities to conflicting transitions. These probabilities and / or priorities are used by the *PN Toolbox*, when simulating a model, for selecting, from a set of conflicting transitions enabled at the same time, the next one to be fired. By selecting the *Conflicting Transitions* option available under the *Modeling* menu, the corresponding dialogue window is opened (fig. II. 9) and the user can add, delete or edit the probabilities and / or priorities for each group of conflicting transitions.

Fig. II.9. The Resolution for Conflicting Transitions dialogue window.

II.2. Exploring Properties

II.2.1. Overview

The *PN Toolbox* offers several possibilities for analyzing discrete event systems modeled with PNs that are briefly presented in the sequel.

II.2.2. Incidence Matrix

The incidence matrix of a PN is computed directly from the graphical model and can be visualized in a MATLAB window opened by selecting the *Incidence Matrix* command from the *Properties* menu. This command is available for all types of PNs.

II.2.3. Behavioral Properties

For untimed PN models, the behavioral properties (e.g. boundedness, liveness, reversibility, etc.) may be studied based on the coverability tree of the net. Relying on the topology and the initial marking of the net, the **PN Toolbox** can automatically construct this tree and display it in either text or graphical mode. The coverability tree is built with or without the ω -convention (fig. II.10). The ω -convention means the usage of a generic symbol (herein denoted by " ω ") for referring to unbounded markings (Murata, 1989). Since the boundedness of a net cannot be a priori known, it is recommended to start the construction of the coverability tree by answering **No** to the question **Do you want to use the "\omega - convention"**?

Fig II.10. The Coverability Tree dialogue window.

II.2.4. Structural Properties

The *structural properties* of a PN are independent of the initial marking and may be characterized in terms of linear inequalities based on the incidence matrix of the net. The structural properties can be investigated from the *Properties / Structural Properties* menu, by means of the *Structural Boundedness*, *Conservativeness*, *Repetitiveness* and *Consistency* options.

II.2.5. Invariants

From the *Properties / Invariants* menu, the minimal-support *P*- and *T-invariants* (Martinez and Silva, 1982) can be visualized as vectors displayed in separate windows, automatically opened by the *PN Toolbox*. New invariants may be constructed as linear combinations of these vectors.

II.3. Running a Simulation

II.3.1. Overview

After a model was drawn or retrieved from the disk, the user can simulate it. Three modes of simulation are implemented in the *PN Toolbox*, namely: *Step*, *Run Slow* and *Run Fast*, that are called from the *Simulation* menu or from the *Simulation Panel*.

The *Step* simulation mode ensures the progress of the simulation by a single step, when the status of a transition is changed from enabled to fired, or from fired to disabled. With the occurrence of each event two successive steps are associated, meaning the complete treatment of the firing transition.

The *Step* and *Run Slow* simulation modes are accompanied by animation. The animation displays the current number of tokens in the places of the net and colors transitions when they are fired. In the *Run Slow* mode, the speed of animation is adjustable from the *Animation Speed* option in the *Simulation / Preferences* dialogue box. The simulation can be stopped with a right-click.

In these two modes, the *Status Panel* (placed in the bottom left-hand corner of the main window) presents the number of events and the current time.

Also, the user can record the progress of the simulation by using the *Log File* command from the *Simulation* menu. This journal is automatically saved in the project directory as an *HTML* file and can be read by means of any Internet browser using the *Simulation / View history* command available in the *PN Toolbox*.

Note that in *Step* or *Run Slow* modes, the *Scope* and *Diary* facilities are available during the simulation. Their usage is relevant when studying timed PN.

The *Run Fast* simulation mode is not accompanied by animation and the simulation speed depends on the computer performances. This mode is recommended when the user is interested in estimating global performance indices of the PN model over a large time horizon (or, equivalently, for the occurrence of a large number of events).

From the *Simulation / Breakpoint* submenu the user can control the end point of the simulation in the *Run Fast* mode. The simulation is stopped by default when 1000 events have occurred or if no transition can fire any longer (i.e. when deadlock appears).

In all simulation modes, immediately after the end of the simulation, the values of the Performance Indices which characterize the simulated dynamics are available on request, by accessing the menu *Performance*.

The simulation principle is different from one type of PN to another. Details about the simulation method implemented in the *PN Toolbox* for each type of PN model are given in the next pages.

II.3.2. Untimed Petri Nets

The sequencing of the events is reduced to simply ordering their occurrences. The simulation runs by firing the transitions one-by-one, in accordance with the *transition firing rule*. The **PN Toolbox** stores all the enabled transitions in a MATLAB array but only one transition fires at a time. The function that returns the next transition to be fired makes the decision according to

the priorities or probabilities assigned to conflicting transitions from the *Modeling / Conflicting Transitions* command.

For the simulation modes *Step* and *Run Slow*, the *Events* counter in the *Status Panel* is indexing and the currently firing transition gets the red color (by default) or an arbitrary color (selected by the user from the option *Simulation / Preferences*). After it is fired, a transition returns to the background color.

The usage of the *Scope* and *Diary* facilities is not relevant for this type of PN.

II.3.3. T-timed Petri Nets

For *transition-timed* PN (*T*-timed PN), time durations can be assigned to the transitions; tokens are meant to spend that time as reserved in the input places of the corresponding transitions. In simulation, all the transitions that can fire due to the current marking are fired at the same time. For conflicting transitions, priorities or probabilities allow the choice of the transition(s) to fire. A transition can fire several times, in accordance with the marking of its input places and, from a theoretical point of view, an infinitesimal delay is considered to separate any two successive firings. After a transition fires, the enabling condition is tested for all the transitions of the net.

For the time durations assigned to the transitions, the appropriate MATLAB functions available in the Statistics Toolbox can be used. When a transition is waiting to fire (i.e. during the period when its input places contain reserved tokens) the reserved tokens are graphically removed from the input places, but the computation procedures of the performance indices consider them as remaining in those places (in full accordance with the theoretic approach).

The *Diary* facility opens a new window that displays (dynamically) the instant(s) when the next fireable transition(s) is (are) to fire (see section II.3.7).

The *Scope* facility opens a new figure window that displays (dynamically) the evolution of the selected performance indices. The final value of the global index shown by the Scope is identical to that displayed on request, at the end of simulation, when the user explores the *Performance* menu (see section I.2.6).

II.3.4. P-timed Petri Nets

For *place-timed* PN (*P*-timed PN), time durations can be assigned to the places; tokens are meant to spend that time as reserved in the corresponding places, immediately after their arrival. In simulation, all the transitions that can fire due to the current marking, fire at the same time. A transition can fire several times, in accordance with the marking of its input places and, from a theoretical point of view, an infinitesimal delay is considered to separate any two successive firings.

For the time durations assigned to the places, the appropriate MATLAB functions available in the Statistics Toolbox can be used. During the simulation, the places that contain reserved tokens get the white color (default) or a color selected by using the option *Simulation / Preferences*.

The *Diary* facility opens a new window that displays (dynamically) the instant(s) when the next fireable transition(s) is (are) to fire (see section II.3.7).

The *Scope* facility opens a new figure window that displays (dynamically) the evolution of the selected performance indices. The final value of the global index shown by the Scope is identical to that displayed on request, at the end of simulation, when the user explores the *Performance* menu (see section I.2.6).

II.3.5. Stochastic Petri Nets

For *stochastic* PNs (SPNs), only exponential type distributions can be used to assign the time durations of the transitions. For conflicting transitions, it is the shortest time duration that allows the choice of the transition to fire, without using priorities or probabilities. Multiple firing of the same transition is not permitted, even if the token content of its input places allows this; i.e. the transition fires once and after the allocated time elapses, it will fire again if the current marking is appropriate. (Notice that the mechanism for selecting the firing transition and the condition for firing only once make the difference from the *T-timed PNs* with exponential type distributions for the time durations).

The sequencing of the firing transitions is exclusively controlled by the time durations of exponential type, which ensures the equivalence with the Markov chains. The firing rate of the transitions (i.e. the inverse of the mean time-duration) is, by default, marking dependent, but the user can select a marking-independent operation.

The *Diary* facility opens a new window that displays (dynamically) the instant(s) when the next fireable transition(s) is (are) to fire.

The *Scope* facility opens a new figure window that displays (dynamically) the evolution of the selected performance indices. The final value of the global index shown by the Scope is identical to that displayed on request, at the end of simulation, when the user explores the *Performance* menu (see section I.2.6).

II.3.6. Generalized Stochastic Petri Nets

Generalized Stochastic PNs (GSPNs) have two different classes of transitions: *immediate* transitions and *timed* transitions. Once enabled, immediate transitions fire in zero time. Timed transitions fire after a random, exponentially distributed enabling time as in the case of SPNs. For *timed* transitions, the firing rate (i.e. the inverse of the mean time-duration) is, by default, marking dependent, but the user can select a marking-independent operation (the same way as for SPNs).

The simulation procedure is similar to the SPN case, the only difference occurring in the case of the *immediate* transitions that fire first; priorities / probabilities can be associated to these transitions, in order to resolve the conflicts.

The *Diary* facility opens a new window that displays (dynamically) the instant(s) when the next fireable transition(s) is (are) to fire.

The *Scope* facility opens a new figure window that displays (dynamically) the evolution of the selected performance indices. The final value of the global index shown by the Scope is identical to that displayed on request, at the end of simulation, when the user explores the *Performance* menu (see section I.2.6).

II.3.7. Diary

When active, this facility opens a new MATLAB window (fig. II.11) that displays (dynamically - during the simulation) the instant(s) when the next fireable transition(s) is (are) to fire. For several fireable transitions, the displayed list of transitions is ordered by the instants when the firings will occur.

The *Diary* facility is available only in the *Step* and *Run Slow* simulation modes. The usage of this facility is recommended for timed PN models and it gives no relevant information in the case of untimed models.

Fig II.11. The Diary window.

II.3.8. Scope

The *Scope* facility opens a new MATLAB window (fig. II.12) that displays (dynamically) the evolution of the selected performance index. Each index provides two types of information, namely a current value (that characterizes the PN at the current moment of the simulation) and a global value (that characterizes the whole evolution of the PN, as an average over the whole time-horizon from the beginning of the simulation till the current moment). For the selected performance index, both current and global values are plotted versus time.

The usage of the *Scope* facility is available only for timed PNs in the *Step* and *Run Slow* simulation modes.

Fig II.12. The Scope window.

The current / global performance indices displayed by *Scope* are:

- for a transition:
 - *Service Distance*: means the duration between two successive firings of the selected transition;
 - *Service Time*: means the duration between the enabling and the firing of the selected transition;

- *Utilization*: means the current status of the selected transition: 1 for the timeinterval between the enabling and the firing of the selected transition; 0 otherwise;
- for a place:
 - *Arrival Distance*: means the duration between two successive instants when tokens arrive in the selected place;
 - *Throughput Distance*: means the duration between two successive instants when tokens leave the selected place;
 - Queue Length: means the number of tokens in the selected place.

During a simulation experiment, only one of the six performance indices can be dynamically displayed by the *Scope*. The red color is automatically set for plotting the evolution of the global performance index. The blue color is automatically set for plotting the evolution of the current performance index. The final value shown by the *Scope* for the global performance index is identical to the value displayed on request, at the end of simulation, by accessing the *Performance* menu.

II.4. Analyzing Simulation Results

After simulation ends, the global performance indices described in the *Scope* section are stored by the *PN Toolbox* and can be visualized by using the *Performance* menu. Besides these, there are also a number of global indices for which the current values are not defined.

The following two tables present the complete lists of global indices associated with the places (displayed by the *Place Indices* command) and the transitions (displayed by the *Transition Indices* command), respectively:

- for a transition:
 - Service Sum: total number of firings;
 - Service Distance: average value of the current index Service Distance;
 - Service Rate: average frequency of firings (inverse of Service Distance);
 - Service Time: average value of the current index Service Time;
 - Utilization: average value of the current index Utilization;
- for a place:
 - Arrival Sum: total number of arrived tokens;
 - Arrival Distance: average value of the current index Arrival Distance;
 - Arrival Rate: average frequency of token-arrivals (inverse of Arrival Distance);
 - Throughput Sum: total number of departed tokens;
 - Throughput Distance: average value of the current index Throughput Distance;
 - *Throughput Rate*: average frequency of token-departures (inverse of *Throughput Distance*);
 - *Waiting Time*: average waiting time per token;
 - Queue Length: average value of the current index Queue Length.

These indices may be saved in HTML format in a file placed in the working directory.

II.5. Max-Plus Models

For place-timed event graphs, the *PN Toolbox* is able to directly derive the max-plus state-space representation from the topology and initial marking of a marked graph, in an implicit form:

$$\mathbf{x}(k) = \bigoplus_{i=0}^{M} \left[\mathbf{A}_{i} \otimes \mathbf{x}(k-i) \oplus \mathbf{B}_{i} \otimes \mathbf{u}(k-i) \right], \quad k = \overline{1, N},$$
$$\mathbf{y}(k) = \bigoplus_{i=0}^{M} \left[\mathbf{C}_{i} \otimes \mathbf{x}(k-i) \oplus \mathbf{D}_{i} \otimes \mathbf{u}(k-i) \right],$$

where M denotes the maximal number of tokens in the initial marking and N stands for the number simulated iterations. of The components of input vector the $\boldsymbol{u}(k) = [u_1(k) \ u_2(k) \ \dots \ u_m(k)]^{\mathrm{T}}$ and those of the output vector $\boldsymbol{y}(k) = [y_1(k) \ y_2(k) \ \dots \ y_p(k)]^{\mathrm{T}}$ represent the k-th firing moments of the m source transitions and of the p sink transitions, respectively. In a similar manner, the state vector $\mathbf{x}(k) = [x_1(k) \ x_2(k) \ \dots \ x_n(k)]^T$ corresponds to the n transitions in the net that have both input and output places (i.e. those transitions which are neither sources nor sinks).

Fig. II.13. Facilities available in the PN Toolbox for max-plus analysis.

The max-plus model is automatically constructed by the *PN Toolbox* by using the *Max-Plus* menu. This command opens the *Max-Plus* window (denoted by (1) in fig. II.13) providing access to the following features available for max-plus analysis:

- Equations button: displays the max-plus equations in a separate window (denoted by (2) in fig. II.13);
- Input button: allows the user to set the values of the input vectors (time instants). This can be done (i) by introducing the time instants as a matrix with m rows and N columns directly in the *dialogue box*, or (ii) by creating the matrix input_time with the structure described above in MATLAB's Workspace;
- Plot: allows the user to select the components of the input, state or output vectors that will be plotted, by using vectors with components equal to 0 (enabled) or 1 (disabled);
- Iteration: runs an iteration of the simulation at a time. The values of the state and output vectors are displayed in the *Message Box* located on the left side of the *Max-Plus* window. The selected components are plotted;
- > *Reset*: resets the model to the initial state and clears the MATLAB axes;
- > Exit: closes the Max-Plus window and returns the control to the PN Toolbox GUI.

The *Message Box* (located in the left side of the *Max-Plus* window, denoted by (3) in fig. II.13) displays the input vectors as well as information reflecting the stage of the analysis (the state and output vectors after each iteration).

In the MATLAB axes (denoted by (4) in fig. II.13) placed in the middle of the *Max-Plus* window, all the selected components are plotted. The components of the input, state and output vectors are plotted with the symbols " ∇ ", "*" and " \circ ", respectively. For two or more components of the same vector, different colors are used with the same symbol.

II.6. Design

A facility for the synthesis of timed or (generalized) stochastic PN models is **Design**, which allows exploring the dependence of a **Design Index (I)** on one or two **Design Parameters** that vary within intervals defined by the user.

A **Design Parameter** may be selected as (i) the initial marking of a place, (ii) a parameter of the distribution function defining the duration associated with a place or a transition in timed PNs, (iii) the mean value of the exponential distribution function associated with a transition in (generalized) stochastic PNs. The **Design Parameters** are generically denoted by x and y; any other notation is not accepted. To ensure the correspondence between the symbol x (or y) and the selected **Design Parameter**, this symbol must be used as a numerical value when filling out the appropriate dialogue box (exactly as detailed in sections II.1.2 and II.1.3). The place or transition subject to parameterization is automatically colored in red.

The **Design Index** may be selected as a global performance index associated with a **Design Node**, namely **Service Rate**, **Service Distance**, **Service Time** or **Utilization** for a transition, or **Arrival Rate**, **Arrival Distance**, **Throughput Rate**, **Throughput Distance**, **Waiting Time** or **Queue Length** for a place – see section II.4. The **Design Index** and the **Design Parameter** do not necessarily refer to the same node.

When selecting the *Design* command from the *Menu Bar* of the *PN Toolbox*, a new window is opened (see fig. II.14). The choice of the *Design Index* and *Design Node* is made from the corresponding combo-boxes.

Fig. II.14. The window opened by the PN Toolbox for Design option.

By pushing the **Design Parameter x** button, the dialogue box presented in fig. II.15.(a) is opened, allowing the user to set the numerical information corresponding to x, consisting in the extreme values to be considered and the number of equally-spaced test-points (where the **Design Index** will be calculated as commented bellow). The same way, numerical information can be set for y by pushing the **Design Parameter** y button, which opens the dialogue box presented in fig. II.15.(b).

🚀 Petri Net Toolbox 🔀	୶ Petri Net Toolbox 🔀
Minimum x	Minimum y
Maximum x 30	Maximum y 5
No. of test-points 40	No. of test-points 4
OK Cancel	OK Cancel
(a)	(b)

Fig. II.15. The dialogue boxes for setting **Design Parameter** (a) x and (b) y.

The set of simulation-experiments defined by the **Design Parameters** is launched by pushing the **Start** button and cannot be interrupted until scanning all the test-points. The **Exit** button serves only for closing the **Design** window (i.e. after finishing all the simulation-experiments).

For each test-point (in the case of a single parameter) or for each pair of test-points (in the case of two parameters) automatically constructed by the *PN Toolbox* in accordance with the information given in the *Design Parameter* dialogue boxes, a simulation experiment is performed in the *Run Fast* mode. Each simulation experiment ends when the condition selected via the combo-box *End of Simulation* is fulfilled. The results of all these simulation experiments yield a graphical plot (2-D or 3-D, respectively) defining the dependence of the selected *Design Index (I)* on the *Design Parameter(s)*. Besides the graphical plot, the toolbox displays the extreme values of the *Design Index*, in the message box placed in the left side of the *Design* window.

Note that the simulation experiments performed for the given design parameter(s) provide the whole set of global indices associated with all the nodes of the net. Each of these indices can be visualized by appropriately choosing the *Design Index* and / or *Design Node*. Such information remains available as long as the user does not press the buttons *Design Parameter x*, *Design Parameter y*, and does not alter the condition in the combo-box *End of Simulation* (because these operations reset the specific work variables).

Appendix 1: XML file-format of a file containing a PN model

The *PN Toolbox* uses an XML file for saving a model. This file is automatically generated by the *PN Toolbox* when the *Save* or *Save As...* commands are used. It can also be edited by using any text editor, if the format described below is respected.

The root tag for the PN model is **PNToolbox**. The tags for global information are:

- Model_name the name of the file containing the model, including the extension ".xml";
- Type a number that represents the PN type which can take one of the following values: 1 untimed PN, 2 T-timed PN, 3 P-timed PN, 4 stochastic PN, 5 generalized stochastic PN;
- Seed a positive integer used to initialize the random number generator of MATLAB;
- Place the necessary information related to a place of the model, depending on the PN type;
- Transition the necessary information related to a transition of the model, depending on the PN type;
- > Arc the information related to an arc of the model;
- Probability the information related to the firing probabilities set for a group of conflicting transitions, if any;
- Priority the information related to the firing priorities set for a group of conflicting transitions, if any.

The Place tag corresponding to a place in the PN model has the following structure:

• Id – the unique identifier of the place; a string in the form "px" with "x" a distinct positive integer;

- Value the coordinates of the cell of the *Drawing Area* that contains the place (a couple of integers between 0 and 49);
- Color a string representing the MATLAB color used for drawing the place in the *Drawing Area*;
- Label additional information used for the graphical representation of the place:
 - Name label of the place that is shown in the *Drawing Area* (any string character);
 - **Offset** a couple of real values representing the offset from the default position of the label (bottom of place);
 - **Visible** boolean variable corresponding to the status of the label visibility ("yes" or "no").
- **InitialMarking** initial marking of the place;
- **Capacity** capacity of the place;
- **Time** information corresponding to the probability distribution of the time duration assigned to the place; used only in the case of P-timed PNs:
 - **Distribution** name of the MATLAB distribution function;
 - **Parameters** values for the parameters of the selected distribution function.

The **Transition** tag corresponding to a transition in the PN model has the following structure:

- Id the unique identifier of the transition; a string in the form "ty" with "y" a distinct positive integer;
- Value the coordinates of the cell of the *Drawing Area* that contains the transition (a couple of integers between 0 and 49);
- **Color** a string representing the MATLAB color used for drawing the transition in the *Drawing Area*;
- Message a string representing the message displayed by the *PN Toolbox* in the *Message Box* when the transition is fired;
- Label additional information used for the graphical representation of the transition:
 - **Name** label of the transition that is shown in the *Drawing Area* (any string character);
 - **Offset** a couple of real values representing the offset from the default position of the label (bottom of transition);
 - **Visible** boolean variable corresponding to the status of the label visibility ("yes" or "no").
- **Time** information corresponding to the probability distribution of the time duration assigned to the transition; used only in the case of T-timed, stochastic and generalized stochastic PNs:
 - **Distribution** name of the MATLAB distribution function;
 - **Parameters** values for the parameters of the selected distribution function;
 - **Marking_Dependent** boolean variable showing the dependence of the firing rate of the transition on the marking of its input places ("yes" or "no"); used only in the case of stochastic and generalized stochastic PNs.

The Arc tag corresponding to an arc in the PN model has the following structure:

- Id the unique identifier of the arc; a string in the form "az" with "z" a distinct positive integer;
- **From** the **Id** of the departure node;
- **To** the **Id** of the arrival node;
- **Style** arc style (1 regular, 2 bidirectional, 3 inhibitor);
- **Type** type of graphical representation of the arc (1 line, 2 cubic spline);
- **Cubic** the coordinates in the *Drawing Area* of the third point defining the spline curve; used only for the arcs with type = 2;
- Color a string representing the MATLAB color used for drawing the arc in the *Drawing Area*;
- Weight the weight of the arc.

The **Probability** tag has the following structure:

- **Transitions** the Ids of the conflicting transitions (separated by comma) subject to the probability assignment;
- Values the corresponding values of the firing probabilities (separated by comma); nonnegative values whose sum equals 1.

The **Priority** tag has the following structure:

- **Transitions** the **Ids** of the conflicting transitions (separated by comma) subject to the priority assignment;
- **Values** the corresponding values of the firing priorities (separated by comma); nonnegative values, 0 meaning the highest priority.

Example: The XML file corresponding to the PN model in fig. II.16 is given below.

Fig. II.16. *ThePN model used for illustrating the XML file-format used by the PN Toolbox*.

```
<?xml version="1.0"?>
<PNToolbox>
<Model_name>XMLexample.xml</Model_name>
<Type>2</Type> <!-- T-timed PN -->
<Seed>66</Seed> <!-- initial seed -->
<Place> <!-- place definition-->
<Id>>p1</Id><!-- place's id -->
<Value>5,43</Value> <!-- coordinates in the Drawing Area-->
<Color>black</Color> <!-- drawing color-->
```

	<label> <!-- information of the label--></label>
	<name>p1</name> string label
	<offset>0.50,-0.20</offset> the offset of the representation
	<visible>yes</visible> the visibility of the label
	<initialmarking>5</initialmarking> initial marking of the place
	<capacity>Inf</capacity> capacity of the place
	>
<transit< td=""><td>ion> <!--transition's definition--></td></transit<>	ion> transition's definition
	<id>t1</id> transition's id
	<value>8,45</value> coordinates in the Drawing Area
	<color>black</color> drawing color
	<message>Firing transition t1</message> message displayed when it is fired
	<label> <!-- information of the label--></label>
	<name>t1</name> string label
	<offset>0.50,-0.20</offset> the offset of the representation
	<visible>yes</visible> the visibility of the label
	<time> <!-- information for time distribution function--></time>
	<distribution>constant</distribution> constant distribution
	<parameters>3</parameters> duration equal to 3
<td>tion></td>	tion>
<transit< td=""><td>ion> <!-- second transition's definition--></td></transit<>	ion> second transition's definition
	<id>t2</id>
	<value>8,41</value>
	<color>black</color>
<message>Firing transition t2</message>	
	<label></label>
	<name>t2</name>
	<offset>0.50,-0.20</offset>
	<visible>yes</visible>
	<time></time>
	<distribution>cont. uniform</distribution> uniform distribution between 1 and 5
	<parameters>1,5</parameters>
<td>tion></td>	tion>
<arc> <</arc>	! arc definition>
	<id>a1</id> arc's ID
	<from>p1</from> departure node
	<to>t1</to> arrival node
	<style>1</style> regular arc

```
<Color>black</Color> <!-- drawing color-->
               <Weight>2</Weight> <!-- arc's weight-->
       </Arc>
       <Arc>
               <ld>a2</ld>
               <From>p1</From>
               <To>t2</To>
               <Style>1</Style>
               <Type>1</Type>
               <Color>black</Color>
               <Weight>3</Weight>
       </Arc>
       <Probability> <!-- probability for conflicting transitions t1 and t2; 25% for t1 and 75% for t2 -->
               <Transitions>t1,t2</Transitions>
               <Values>0.25,0.75</Values>
       </Probability>
</PNToolbox>
```

Appendix 2: Configuration File for the Petri Net Toolbox

The **PN Toolbox** uses a configuration file to store the global information needed for initialization. This file, called *PNTconfig.txt*, is stored in the folder where the **PN Toolbox** is installed. The user can modify the values of all the parameters; the modifications are effective the next time when the **PN Toolbox** is started.

The options from *PNTconfig.txt* file used by *PN Toolbox* are:

- Seed the initial state of the *random number generator* version 5 from MATLAB. This parameter is called "Seed" for history reasons; first version of *PN Toolbox* used version 4 of the *random number generator* where the 'seed' option of the MATLAB rand function was used. The version 5 uses 'state' parameters of rand function. (this parameter can have any integer value);
- DisplayMessages boolean value that gives the status of the transitions' messages visibility in the *Message Box* in *Step* and *Run Slow* simulation modes (1 the messages are visible, 0 the messages are invisible);
- Background the background color for all MATLAB figures opened by the PN Toolbox (a vector with three elements ranging from 0 to 1);
- HTMLBackground –the background color for all HTM files opened by the PN Toolbox (this parameter is given in hexadecimal);
- HTMLText the text color for all HTML files opened by the PN Toolbox (given in hexadecimal);

- Breakpoint the default breakpoint for *Run Fast* simulation mode (1 Number of events, 2 Simulation time, 3 Firings for transition, 4 Tokens arrived in place);
- Breakpoint_Event default number of events, if breakpoint is selected on Number of events;
- Breakpoint_Time default simulation time, if breakpoint is selected on Simulation time;
- Breakpoint_Transition default index of the transition in the transitions array, if breakpoint is selected on *Firings for transition*;
- > Breakpoint_ServiceSum the number of firings for the Breakpoint_Transition;
- Breakpoint_Place default index of the place in the places array, if breakpoint is selected on *Tokens arrived in place*;
- Breakpoint_ArrivalSum the number of tokens arrived in the Breakpoint_Place;
- Projects_Save the whole path of the folder where the PN Toolbox saves the new models;
- Color_Wait_Token MATLAB color used for the graphical representation of places that contain reserved tokens (only in the case of *P*-timed PNs);
- Color_Fire_Transition MATLAB color used for the graphical representation of firing transitions;
- NewFileName the default name of the new model, including extension (.xml);
- ColorPlaces MATLAB color used for drawing the places;
- ColorTransitions MATLAB color used for drawing the transitions;
- ► ColorArcs MATLAB color used for drawing the arcs.

Bibliografie

- Ajmone Marsan, M., Balbo, G., Bobio, A., Chiola, G., Conte, G. and Cumani, A. (1985) "On Petri nets with stochastic timing", *Int. Workshop on Timed Petri Nets*, Torino, pp. 80-87.
- Ajmone Marsan, M. (1990) "Stochastic Petri nets: An elementary introduction", in Rozenberg, G.: Lecture Notes in Computer Science, Vol. 424, Advances in Petri Nets 1989, pp. 1-29, Springer-Verlag, Berlin.
- Antsaklis, P.J. and Moody, J.O. (1998) Supervisory Control of Discrete Event Systems Using Petri Nets, Kluwer Academic Publishers.
- ARENA Home Page: http://www.arenasimulation.com/support/.
- Bolch, G., Greiner, S., de Meer, H. and Trivedi, K. (1998) *Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications*, John Wiley and Sons, New York.
- Burns, A. and Wellings, A. (1991) *Real-Time Systems and Their Programming Languages*, Chap. 11, Addison–Wesley.
- Cao, X.R. and Ho, Y.C. (1990) "Models of discrete event dynamic systems", *IEEE Control Systems Magazine*, Vol.10, pp. 69–75.
- Bacelli, F., Cohen, G., Olsder, G.J. and Quadrat, J.P. (1992) *Synchronization and Linearity*. *An Algebra for Discrete Event Systems*, John Wiley and Sons, New York.
- Cassandras, C.G. (1993) Discrete Event Systems: Modeling and Performance Analysis, Irwin.
- Cassandras, C.G., Lafortune, S. and Olsder, G.J. (1995) "Introduction to the modelling, control and optimization of discrete event systems", in Isidori, A. (Ed.) *Trends in Control A European Perspective*, Springer-Verlag, pp. 217–292.
- Cohen, G., Dubois, D., Quadrat, J.P. and Viot, M. (1985) "A linear-system-theoretic view of discrete-event processes and its use for performance evaluation in manufacturing". *IEEE Trans. Automat. Control*, Vol.30, pp. 210–220.
- Cohen, G., Gaubert, S. and Quadrat, J.P. (1998) "Max-plus algebra and system theory: where we are and where to go now", *IFAC Conf. on System Structure and Control*, Nantes.
- Cohen, G., Gaubert, S. and Quadrat, J.P. (2001) "Max-plus algebra in Scilab and applications", *Scilab Workshop*, Liama, Pekin.
- David, R. et Alla, H. (1992) Du Grafcet aux réseaux de Petri (2e édition), Hermes, Paris.
- David, R. and Alla, H. (1994) "Petri nets for modeling of dynamic systems A survey", *Automatica*, Vol. **30**, pp. 175–202.
- Desrochers, A.A. and Al-Jaar, R.Y. (1993) Petri Nets for Automated Manufacturing Systems: Modeling, Control and Performance Analysis, Rensselaer Polytechnic Institute.

- Dijkstra, E. W. (1968) "Co-operating sequential processes", in Genyus, F. (ed.) *Programming Languages*, New York Academic, pp. 43-112.
- Freedman, P. (1991) "Time, Petri nets, and robotics", *IEEE Trans. on Robotics and Automation*, Vol. 7, No. 4, pp. 417-433.
- Gürel, A., Pastravanu, O.C. and Lewis, F.L. (1994) "A robust approach in deadlock-free and live FMS design", *Proc. 2nd IEEE Mediterranean Symp. New Directions in Control and Automation*, pp. 40–47, Crete.
- Gürel, A., Pastravanu, O.C. and Lewis, F.L. (1998) "A system-theoretic approach for discreteevent control of manufacturing systems", in Gunawardena, J. (Ed.) *Idempotency*, pp. 242-261, Cambridge University Press.
- Ho, Y.C. and Cassandras, C.G. (1983) "A new approach to the analysis of discrete event dynamic systems", *Automatica*, Vol. **19**, pp. 149–167.
- Huang, H.H., Lewis, F.L., Pastravanu, O.C. and Gürel, A. (1995) "Flowshop scheduling design in an FMS matrix framework", *Control Engineering Practice*, Vol. **3**, pp. 561–568.
- Ichikawa, A. and Hiraishi, K. (1987) "Analysis and control of discrete event systems represented by Petri nets", *Lecture Notes in Control and Information Science*, Vol. **103**, pp. 115–134, Springer-Verlag.
- Iordache, M.V. and Antsaklis, P.J. (2002) "Software tools for the supervisory control of Petri nets based on place invariants", Technical Report ISIS-2002-003, University of Notre Dame, IN, USA, <u>http://www.nd.edu/~isis/techreports/isis-2002-003.pdf</u>.
- Jeng, M.D. and DiCesare, F. (1993) "A review of synthesis techniques for Petri nets with applications to automated manufacturing systems", *IEEE Trans. on Systems, Man and Cybernetics*, Vol. 23, pp. 301–313.
- Jeng, M.D. and DiCesare, F. (1995) "Synthesis using resource control nets for modelling shared-resource systems", *IEEE Trans. on Robotics and Automation*, Vol. **11**, pp. 317–327.
- Jensen, K. (1992) Coloured Petri Nets Basic Concepts, Analysis Methods and Practical Use, Vol. 1: Basic Concepts, Springer-Verlag.
- Jensen, K. (1994) Coloured Petri Nets Basic Concepts, Analysis Methods and Practical Use, Vol. 2: Analysis Methods, Springer-Verlag.
- Jensen, K. (1997) Coloured Petri Nets Basic Concepts, Analysis Methods and Practical Use, Vol. 3: Practical Use, Springer-Verlag.
- Jucan, T. și Țiplea, F.L. (1999) Rețele Petri. Teorie și practică, Ed. Academiei Române.
- Kelton, W.D., Sadowski, R.P. and Sadowski, D.A. (2002) *Simulation with Arena 2nd ed.*, McGraw Hill Companies, Inc.
- Kleinrock, L. (1976) Queueing Systems, John Wiley and Sons, New York.
- Krogh, B.H. and Beck, L. (1986) "Synthesis of place/transitions nets for simulation and control of manufacturing systems", *Proc. IFIP Symp. Large Scale Syst.*, Zurich, pp. 661– 666.
- Lafortune, S. and Yoo, H. (1990) "Some results on Petri net languages", *IEEE Trans. on Automatic Control*, Vol. **35**, pp. 482–485.
- Leția, T.S. și Aștilean, A.M. (1998) Sisteme cu evenimente discrete: modelare, analiză, sinteză și control, Ed. Albastră.
- Levi. S.T. and Agrawala, A.K.(1990) Real Time System Design, Chapt. 7, McGraw-Hill.

- Lewis, F.L. Pastravanu, O. and Huang, H.H. (1993) "Controler design and conflict resolution for discrete event manufacturing systems", *Proc. 32nd IEEE Conf. Decision and Control*, pp. 3288–3293, San Antonio.
- Lewis, F.L., Huang, H.H., Pastravanu, O. and Gürel, A. (1995) "Control systems design for flexible manufacturing systems", in Raouf, A. and Ben-Daya, M. (Eds.) *Flexible Manufacturing Systems: Recent Developments*, pp. 253–290, Elsevier Science.
- Lewis, F.L., Tacconi, D., Gürel, A., Huang, H.H. and Pastravanu, O. (1997) "Manufacturing controller design and deadlock avoidance using a matrix model for discrete event systems", in Tzafestas, S.G. (Ed.) *Methods and Applications of Intelligent Control*, pp. 485-508, Kluwer Academic Publishers.
- Lewis, F.L., Gürel, A., Bogdan, S., Doganalp, A. and Pastravanu, O. (1998) "Analysis of deadlock and circular waits using a matrix model for flexible manufacturing systems", *Automatica*, Vol. 34, No. 9, pp. 1083-1100.
- Lindemann, C. (1998). *Performance Modelling with Deterministic and Stochastic Petri Nets*. John Wiley and Sons, Chichester.
- Mahulea, C., Bârsan, L. and Pastravanu, O. (2001) "Matlab tools for Petri-net-based approaches to flexible manufacturing systems", In: Filip, F.G., Dumitrache, I. and Iliescu, S. (Eds.), 9th IFAC Symp. on Large Scale Systems LSS 2001, Bucharest, pp. 184-189.
- Mahulea, C. (2002) *Petri Net Toolbox a MATLAB Library for Discrete Event Systems*, MS Thesis, Department of Automatic Control and Systems Engineering, The Sheffield University, UK.
- Martinez, J. and Silva, M. (1982) "A simple and fast algorithm to obtain all invariants of a generalized Petri net", in Girault, C. and Reisig, W. (Eds.), *Application and Theory of Petri Nets*, Informatik Fachberichte 52, Springer, pp. 301-310.
- Matcovschi, M.H., Mahulea, C. and Pastravanu, O. (2001) "Exploring structural properties of Petri nets in MATLAB", *7th Int. Symp. on Automatic Control and Computer Science SACCS 2001*, Iasi, CD Rom, 6 pg.
- Matcovschi, M.H. and Mahulea, C.(2002) "Generalized stochastic Petri nets in performance evaluation for queueing networks", *ECIT'2002 and ROSYCS'2002 Joint Conf.*, Iasi, CD-ROM, 6 pg.
- Matcovschi, M.H., Mahulea, C. and Pastravanu, O. (2002) "Computer tools for linear systems over max-plus algebra", *Periodica Politechnica*, "Politehnica" University of Timisoara, Romania, Trans. on Automatic Control and Computer Science, Vol. 47(61), No. 1, pp. 97-102.
- Matcovschi, M.H., Mahulea, C. and Pastravanu, O. (2003) "Petri net toolbox for MATLAB", *11th IEEE Mediterranean Conference on Control and Automation MED'03*, Rhodes, Greece (submitted).
- The MathWorks Inc., Creating Graphical User Interfaces, Natick, Massachusetts, 2000.
- The MathWorks Inc., Learning MATLAB, Natick, Massachusetts, 2001.
- The MathWorks Inc., StateFlow User's Guide, Natick, Massachusetts, 2001.
- The MathWorks Inc. (2003) *MATLAB Connections Third Party Products and Services*, <u>http://www.mathworks.com/products/connections</u>.
- Mînzu, V. și Cernega, D. (2001) Sisteme dinamice cu evenimente discrete: abordări și aplicații, Ed. didactică și pedagogică.

- Mortensen, K.H. (2003) Petri Nets Tools and Software, http://www.daimi.au.dk/PetriNets/tools.
- Murata, T. (1989) "Petri nets: properties, analysis and applications", Proc. IEEE, Vol. 77, pp. 541-580.
- Nissanke, N. (1997) Real Time Systems, Prentice Hall.
- Pastravanu, O.C., Gürel, A., Huang, H.H. and Lewis, F.L. (1994) "Rule-based controller design algorithm for discrete event manufacturing systems", Proc. American Control Conf., pp. 299–305, Baltimore.
- Pastravanu, O.C., Gürel, A. and Lewis, F.L. (1994) "Petri net based deadlock analysis in flowshops with kanban-type controllers", Proc. 10th ISPE/IFAC Int. Conf. on CAD/CAM, Robotics and Factories of Future, Ottawa, pp. 75-80.
- Pastravanu, O.C. (1997) Sisteme cu evenimente discrete. Tehnici calitative bazate pe formalismul rețelelor Petri, Ed. Matrix Rom.
- Pastravanu, O.C., Gürel. A. and Lewis, F.L. (1997) "Teaching discrete event control of manufacturing systems", in Bir, A., Dinibutun, A.T., Eksin, I. and Istefanopulos, Y. (Ed.) Proc. of the 4th IFAC Symposium on Advances in Control Education ACE'97, Istanbul, pp. 307-312.
- Petri, C.A (1962) Kommunikation mit Automaten, Institut für Instrumentelle Mathematik Bonn, Schriften des IIM Nr. 2.
- Peterson, J.L. (1981) Petri Net Theory and the Modeling of Systems, Prentice-Hall.
- Ramadge, P.J. and Wonham, W.M. (1987) "Supervisory control of a class of discrete event processes", SIAM J. Control and Oprimization, Vol. 25, pp. 206–230.
- Ramamoorthy, C.V. and Ho, G.S. (1980) "Performance evaluation of asynchronous concurrent systems using Petri nets", IEEE Trans. on Software Eng., Vol. 6 (5), pp. 440-449. Reisig, W. (1985) Petri Nets - An Introduction, Springer-Verlag.
- Sanchez, A. (1996) Formal Specification and Synthesis of Procedural Controllers for Process Systems, Lecture Notes in Control and Information Sciences, Vol. 212, Springer–Verlag.
- Scilab Home Page, http://www-rocq.inria.fr/scilab/.
- Stănescu, M., Caramihai, S.I., Curaj, A., Popescu, O., Popescu D.C., Catana, D. (1996) Sisteme dinamice cu evenimente discrete, Universitatea "Politehnica" București (Tipar rotaprint).
- Svádová, M. and Hanzálek, Z. (2001) "Matlab Toolbox for Petri Nets", 22nd Int. Conf. ICATPN 2001, Newcastle, UK, pp. 32-36.
- Yamalidou, E.C., Patsidou, E.P. and Kantor, J.C. (1990) "Modeling discrete-event dynamical systems for chemical process control – A survey of several new techniques", Computers chem. Engng., Vol. 14, No. 3, pp. 281-299.
- Zhou, M.C. and DiCesare, F. (1993) Petri Net Synthesis for Discrete Event Control of Manufacturing Systems, Kluwer, Boston.
- Zurawski, R. and Zhou, M.C. (1994) "Petri nets and industrial applications: A tutorial", IEEE Trans. on Ind. Electronics, Vol. 41, No. 6, pp. 567-583.

Index și dicționar român-englez

A

accesibilitate <reachability> - 27 *arbore de* <reachability tree> -29graf de <reachability graph> -30*multime de* <reachability set> -27acoperire <coverability> - 29 arbore de <coverability tree> - 29 *cu invarianți* – \mathbf{v} . invariant graf de < coverability graph > -30alegere <choice> asimetrică <asymmetric choice> - 11 *liberă* < free choice > -11liberă extinsă <extended free choice>-11 *rețea cu* - **v.** rețea arbore <tree> *de accesibilitate* – **v.** accesibilitate de acoperire - v. acoperire arc < arc > -7ponderea unui < weight of an arc > -7*inhibitor* <inhibitor arc> - 11

B

bloc corect format <well–behaved block> – 52 *blocare circulară* < circular blocking> – 29 *buclă autonomă* <self-loop> – 8

С

capacitate <capacity>
 a unei poziții - v. poziție
 a unei rețele - v. rețea
 de jetoane - v. jeton
celulă <cell, workcell> - v. sistem (proces)

circuit orientat < directed circuit>- 33 concurrență <concurrency>-11 *condiție* <condition> - 8*post-condiție* <post-condition> - 8 post-condiție comună <common postcondition > -11*pre-condiție* <pre-condition> - 8 *conflict* <conflict> - v. alegere *confuzie* <confusion> - 11 asimetrică <asymmetric confusion> - 11 simetrică <symmetric confusion> - 11 *conservativitate* <conservativeness> - 86 consistență <consistency>-87 *controler* (*procedural*) <(procedural) controller > -66criterii <criteria> *de accesibilitate* – **v.** accesibilitate de conservativitate - v. conservativitate de consistență - v. consistență de märginire – v. märginire *de repetitivitate* – **v.** repetitivitate de siguranță – v. siguranță *de viabilitate* – **v.** viabilitate

D

deadlock – 29 *decizie* <decision> – v. alegere *distribuție de probabilitate* <probability distribution> – 129

E

ecuație de stare <state equation> – 30

eveniment <event> – 1, 8 excludere mutuală <mutual exclusion> generalizată <generalized mutual exclusion> – 64 paralelă <parallel mutual exclusion> – 58 secvențială <sequential parallel exclusion> – 61 executarea unei tranziții – v. tranziție

F

fir de așteptare <queue> – 171

G

graf <graph> de accesibilitate – v. accesibilitate de acoperire – v. acoperire marcat (de evenimente) <marked (event) graph> – 12 tare conex <strongly connected graph> – 32

Ι

invariant <invariant> – 88 *de bază (fundamental)* <basic invariant> – 89 *minimal* <minimal invariant> – 89 *rețea acoperită cu* <net covered by invariants> – 90 *suport de* <invariant support> – 88

J

jeton <token> – 8 *capacitate de* <token capacity> – 81 *rezervat* <reserved token> – 103 *job-shop* – 125, 196

Κ

kanban – 62

\mathbf{L}

lanț Markov <Markov chain> – 155 *stare* <state> – 137

Μ

marcaj <marking> - 7 *accesibil* – **v.** accesibilitate *de deadlock* – **v.** deadlock *initial* <initial marking> - 8*viabil* – **v.** viabilitate masină de stare <state machine> - 12 *matrice de incidență* <incidence matrix> – 30 *de ieşire* <output incidence matrix> -31de intrare <input incidence matrix> - 31 *max-plus* <max-plus> – 175 *model de stare* <state-space model> – 178 operator Kleene <Kleene star> - 182 operații < operations> - 175 *mărginire* <boundedness> - 27 structurală <structural boundedness> - 85 *metodă* <method> pozițiilor complementare - v. poziție rafinării operațiilor - v. rafinare *model* <model> *calitativ, logic sau netemporizat* <qualitative, logical or untimed model>-10*cantitativ sau temporizat* <quantitative or timed model> -105*modelare* <modeling> *a efectuării operațiilor* – v. operație a utilizării resurselor - v. resursă structuri tipice utilizate în <typical structures used in modeling > -17*multime* <set> *de accesibilitate* – **v.** accesibilitate *predecesor* <pre-set> – 8 *succesor* <post-set> - 8

Ν

al unei retele Petri <node of a Petri net> - 7

0

nod <node>

operație

rafinarea operațiilor – **v.** rafinare *operator Kleene* – **v.** max-plus
Р *paralelism* parallel activities> - v. concurență *partajare* <sharing> a unei resurse - v. resursă *perioadă* – v. regim periodic pondere (a unui arc) – v. arc post-condiție - v. condiție *poziție* < place> -7*complementară (metoda)* <complementary place > -10*de capacitate finită* < finite-capacity place > -10*de capacitate infinită* <infinite-capacity place > -8*structural mărginită* < structurally bounded place > -85*temporizată* <timed place > -104pre-condiție - v. condiție *proces stohastic* <stochastic process>-137 *proiectare* <design> specificatie de <design specification> - 49 unei structuri de conducere – v. structură de conducere *unui controler procedural* – **v.** controler *proprietate* <property> *comportamentală*
behavioral property>-27 structurală <structural property> - 85

R

rafinare <refinement>
 operațiilor <refinement of operations> - 50
regim <regime>
 ciclic (periodic) <periodical operation> 107, 109
 permanent <steady state> - 157
regulă <rule>
 tranziției - v. tranziție
repetitivitate <repetitiveness> - 86
resursă <resource>
 ataşarea resurselor <addition of resource
 places> - 55

de stocare <buffer> -50, 56excludere mutuală în utilizarea unei – v. excludere mutuală generală <general resource> - 50 nepartajată <nonshared resource>-50 partajată <shared resource> - 50 *partajată paralel* parallelly shared resource> -58, 63*partajată secvențial* <sequentially shared resource> -60, 63*specifică* < specific resource> -50, 58*rețea (Petri)* <(Petri) net> acoperită cu invarianți – v. invariant cu alegeri asimetrice <asymmetric-choice net > -13*cu alegeri libere* < free-choice net> – 12 cu alegeri libere extinse <extended freechoice net>-13*cu capacitate finită* \leq finite-capacity net \geq -10cu capacitate infinită <infinite-capacity net > -8*cu priorități* < net with priorities > -11*cu probabilități* <net with probabilities> - 10 *mărginită* <bounded net> – v. mărginire generalizată stohastică <generalized stochastic net> -160*netemporizată* \leq untimed (Petri) net \geq -7ordinară <ordinary (Petri) net> - 8, 11 *pură* <pure (Petri) net> -8*reversibilă* <reversible net> -v. reversibilitate sigură <safe net> -28stohastică <stochastic net>-153 *tare conexă* \leq strongly connected net \geq - v. graf tare conex *temporizată* <timed (Petri) net> - 103 *viabilă* <live net> - v. viabilitate reversibilitate <reversibility> - 28

S

secvență de executări (de tranziții) <firing sequence> - 31 server <server> - 21, 138, 161, 163, 171

- 237

— Aplicații ale rețelelor Petri – O. Păstrăvanu, M. Matcovschi, C. Mahulea 🕤

cu posibilități de defectare <unreliable server > -22sincronizare <synchronization>-11 sinteză <synthesis> - 50 ascendentă <bottom-up synthesis> - 50 descendentă <top-down synthesis> - 50 hibridă < hybrid synthesis > - 50 sistem (proces) <system (process)> *de aşteptare* <queueing system> – 171 de calcul <computer system> -39, 67, 94,100, 113, 119 *de comunicație* <communication system> -18, 38, 111, 192 *de fabricație (automat)* <(automated) manufacturing system (cell)> -25, 44,70, 98, 118, 123, 142 *de fabricație, flexibil* <flexible manufacturing system > -73producător-consumator <producerconsummer system > -17specificație de proiectare - v. proiectare stare <state> *a unei rețele Petri* – v. marcaj *a unui lanț Markov* – **v.** lanț Markov *a unui model max-plus* – v. max-plus structură de conducere <control structure>-49 subclase de retele Petri ordinare <subclasses of ordinary Petri nets> -12suport de invariant – v. invariant

Т

temporizare <timing> deterministă <deterministic timing > - 103 stohastică \leq stochastic timing > -129topologie (de rețea Petri) <(Petri net) topology> -8*tranziție* <transition> – 7 executarea unei < firing of a transition> -9*prioritate în executare* <firing priority> – 11 *probabilitate de executare* <firing probability>-11 *receptor* <sink transition> -9*regula* (*simplă*) *a* <(weak) transition rule > -9*regula strictă a* <strict transition rule> – 10 sursă \leq source transition> -9temporizată <timed>-103 validarea unei <enabling of a transition>-9 *validată de ordin q* <*q*-enabled> – 153

V

validarea unei tranziții - v. tranziție vector <vector> de control <control vector> - 31 de marcaj - v. marcaj de stare - v. stare numărului de executări <firing count vector> - 32 viabilitate <liveness> - 28

238 -

APLICAȚII ALE REȚELELOR PETRI

Ideea de a elabora lucrarea de fată s-a conturat pe fondul evolutiei, într-un ritm deosebit de alert, a domeniului sistemelor cu evenimente discrete, din dorința de a oferi un material care să furnizeze atât informații teoretice ample, cât și o bogată ilustrare a utilizării lor în practică. Deși, prin conținutul transmis, cartea posedă un caracter monografic, prin modul de structurare vizează, drept principal obiectiv, construirea rationamentelor stiintifice specifice domeniului, manipulând cunoștințele în contexte aplicative variate și relevante. Fiecare capitol al cărții conține un substanțial breviar teoretic, oferind cititorului toate noțiunile și rezultatele de bază care, ulterior, sunt angrenate în rezolvarea de probleme. O contribuție deosebită la dezvoltarea abilităților de investigare este adusă de o serie de aplicații ce compară și corelează rezultatele rezolvărilor analitice și, respectiv, computationale.

În scopul abordării asistate de calculator a rezolvărilor a fost utilizat mediul Petri Net Toolbox, dezvoltat de autorii cărții spre a rula sub MATLAB – care se bucură de o largă popularitate în cercetarea academică. Întregul material a fost de aşa manieră conceput încât să asigure adresabilitate pentru o sferă largă de cititori cu formație tehnico-științifică, incluzând specialiști, cercetători, cadre didactice, studenți și doctoranzi.

Stilul de prezentare se concretizează într-o expunere autonomă, ce nu necesită alte lecturi în paralel, dar, totodată, cititorului preocupat de aprofundarea anumitor teme îi sunt indicate referințe bibliografice generoase. Modul de organizare al lucrării nu obligă la parcurgerea integrală a textului, permiţând o lectură selectivă, orientată în conformitate cu nivelul de pregătire şi problematica de interes a fiecărui cititor în parte.

ÎN STUDIEREA SISTEMELOR CU EVENIMENTE DISCRETE

ISBN 973-8292-86-7